在线观看av毛片亚洲_伊人久久大香线蕉成人综合网_一级片黄色视频播放_日韩免费86av网址_亚洲av理论在线电影网_一区二区国产免费高清在线观看视频_亚洲国产精品久久99人人更爽_精品少妇人妻久久免费

首頁 > 文章中心 > 開關(guān)電源模塊

開關(guān)電源模塊

前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇開關(guān)電源模塊范文,相信會(huì)為您的寫作帶來幫助,發(fā)現(xiàn)更多的寫作思路和靈感。

開關(guān)電源模塊

開關(guān)電源模塊范文第1篇

關(guān)鍵詞:MSP430;開關(guān)電源;并聯(lián)DC/DC;電流調(diào)節(jié)

中圖分類號:TP368 文獻(xiàn)標(biāo)識碼:A文章編號:1007-9599 (2011) 17-0000-01

Switching Power Supply Modules Parallel Power Supply System on MSP430 MCU

Xue Xiao1,2

(1.Nanyang Polytechnic,Nanyang473000,China;2.China University of Geosciences,Wuhan430074,China)

Abstract:In this paper,low-power MSP430 microcontrollers produced by two parallel power supply system,the use of integrated chip LM2596 converter output voltage 8V,power of 16W,the conversion efficiency of 65%,and maximum current up to 4.5A;two DC/DC module the current ratio can be automatically adjusted within 2%error.After testing, the basic part and the part played some of the indicators are in line with requirements.

Keywords:MSP430;Switching Power;Parallel supply DC/DC;Current regulator

根據(jù)2011年全國電子設(shè)計(jì)競賽A題題目要求:設(shè)計(jì)并制作一個(gè)由兩個(gè)額定輸出功率均為16W的8VDC/DC模塊構(gòu)成的并聯(lián)供電系統(tǒng)。根據(jù)這一目標(biāo),設(shè)計(jì)了基于MSP430單片機(jī)的開關(guān)電源模塊并聯(lián)供電系統(tǒng)

一、理論分析與計(jì)算

(一)DC/DC變換器穩(wěn)壓的方法。用開關(guān)電壓調(diào)節(jié)器進(jìn)行電壓控制,采用LM2596電源管理單片集成電路,不僅可以輸出3A的電流,還擁有很好線性、功耗小、效率高、負(fù)載調(diào)節(jié)特點(diǎn)。電路簡單可靠,采用兩相同模塊并聯(lián),可以輸出6A電流。輸入電壓為24V時(shí),要求的輸出8V電壓剛好在可輸出電壓范圍內(nèi),從而達(dá)到了要求。

電壓輸出:

因此,系統(tǒng)電壓穩(wěn)定在8V。

(二)電流電壓檢測。在輸出端串聯(lián)一個(gè)1Ω的電阻,通過運(yùn)放衰減電路,采用MSP430單片機(jī)片內(nèi)12位AD采集1Ω的電壓值,得到DC/DC模塊的電流。

ADC采樣電壓:

因此,單個(gè)DC/DC模塊的電流: (單位:A)

(三)均流方法。本設(shè)計(jì)主要根據(jù)PID算法,在鍵盤上輸入命令后,單片機(jī)動(dòng)態(tài)調(diào)節(jié)電流比例,從而最終達(dá)到理想穩(wěn)定的狀態(tài)。離散化公式:

當(dāng) 時(shí):

; ;

當(dāng) 時(shí):

; ; ;

對于LM2596來說,電流輸出比與FB端口的電壓比有關(guān),單片機(jī)MSP430采集各個(gè)DC/DC模塊電流后通過片內(nèi)DAC模塊控制FB端口,從而控制了電流的輸出比值

二、電路設(shè)計(jì)

(一)系統(tǒng)組成。系統(tǒng)包括MSP430單片機(jī)最小系統(tǒng),兩個(gè)額定輸出功率為16W的8VDC/DC模塊,一個(gè)輸入命令的鍵盤,顯示檢測電壓值的液晶。鍵盤輸入命令后單片機(jī)根據(jù)命令利用片內(nèi)ADC和DAC控制DC/DC模塊的電流比例,并且將采集的數(shù)據(jù)顯示在液晶上。

(二)DC/DC模塊設(shè)計(jì)。輸入的直流電源經(jīng)過電感濾波后輸入到LM2596第一管腳,通過R3和R10調(diào)節(jié)目標(biāo)電壓,通過以上計(jì)算公式公式得:R3為5.5KΩ

(三)測控電路。測控電路主要使用MSP430片內(nèi)單片機(jī)ADC與DAC及鍵盤,在采集和控制電路上分別使用運(yùn)放LM385電壓跟隨電路,并且在采集電路上進(jìn)行1/2分壓,使信號剛好在ADC有效范圍內(nèi)。

三、測試結(jié)果及分析

(一)基本要求測試

1.額定輸出功率下,負(fù)載電壓及效率

2.負(fù)載電流1A時(shí),系統(tǒng)測試數(shù)據(jù)

3.負(fù)載電流1.5A時(shí),系統(tǒng)測試數(shù)據(jù)

(二)發(fā)揮部分測試

1.負(fù)載電流0.5A-3.5A時(shí),系統(tǒng)測試數(shù)據(jù)

開關(guān)電源模塊范文第2篇

1 引言

在發(fā)電廠和變電所中,為了給控制、信號、保護(hù)、自動(dòng)裝置、事故照明和交流不停電電源等裝置供電,一般都要求有可靠的直流電源。為此,發(fā)電廠和110kV以上的變電所通常用蓄電池作為直流電源,但要求上述電源具有高度的可靠性和穩(wěn)定性,并且其電源容量和電壓能在最嚴(yán)重的事故情況下保證用電設(shè)備的可靠工作。

另外,目前由于半導(dǎo)體功率器件、磁性材料等方面的原因,單個(gè)開關(guān)電源模塊的最大輸出功率只有上千瓦,而實(shí)際應(yīng)用中往往需用幾十千瓦甚至幾百千瓦以上的開關(guān)電源為系統(tǒng)供電,因此,要通過電源模塊的并聯(lián)運(yùn)行來實(shí)現(xiàn)。大功率電源系統(tǒng)需要采用若干臺(tái)開關(guān)電源并聯(lián)的形式,以滿足負(fù)載的功率要求。在并聯(lián)系統(tǒng)中,每個(gè)變換器應(yīng)處理較小的功率以降低應(yīng)力,還應(yīng)采用冗余技術(shù)來提高系統(tǒng)的可靠性。電源并聯(lián)運(yùn)行是電源產(chǎn)品模塊化、大容量化的一個(gè)有效方法,同時(shí)也是實(shí)現(xiàn)組合大功率電源系統(tǒng)的關(guān)鍵。

2 常用的均流方法

由于大功率電源負(fù)載需求的增加以及分布式電源系統(tǒng)的發(fā)展,開關(guān)電源并聯(lián)技術(shù)的重要性也日益增加。但是并聯(lián)的開關(guān)變換器在模塊間通常需要采用均流(Current sharing)措施。它是實(shí)現(xiàn)大功率電源系統(tǒng)的關(guān)鍵,其目的在于保證模塊間電源應(yīng)力和熱應(yīng)力的均勻分配,防止一臺(tái)或多臺(tái)模塊運(yùn)行在電流極限(限流)狀態(tài)。因?yàn)椴⒙?lián)運(yùn)行的各個(gè)模塊特性并不一致,外特性好(電壓調(diào)整率?。┑哪K可承擔(dān)更多的電流,甚至過載,從而使某些外特性較差的模塊運(yùn)行于輕載狀態(tài),甚至基本上是空載運(yùn)行。其結(jié)果必然加大了分擔(dān)電流多的模塊的熱應(yīng)力,從而降低了可靠性。

    開關(guān)電源并聯(lián)系統(tǒng)常用的均流方法有:

(1)輸出阻抗法

(2)主從設(shè)置法

(3)按平均電流值自動(dòng)均流法

(4)最大電流自動(dòng)均流法(又叫自主均流法)。

直流模塊并聯(lián)的方案很多,但用于電力操作電源,都存在著這樣或者那樣的缺陷,其主要表現(xiàn)在:輸出阻抗法的均流精度太低;主從設(shè)置法和平均電流法都無法實(shí)現(xiàn)冗余技術(shù),因而并聯(lián)電源模塊系統(tǒng)的可靠性得不到很好的保證;外加均流控制器法使系統(tǒng)變得過于復(fù)雜,不利于把這一技術(shù)轉(zhuǎn)化成實(shí)際的產(chǎn)品。而自主均流法以其均流精度高,動(dòng)態(tài)響應(yīng)好,可以實(shí)現(xiàn)冗余技術(shù)等特點(diǎn),越來越受到產(chǎn)品開發(fā)人員的青睞。

所謂自主均流技術(shù),就是在n個(gè)并聯(lián)模塊中,以輸出電流最大的模塊為主模塊,而以其余的模塊為從模塊。由于n個(gè)并聯(lián)模塊中,一般都沒有事先人為設(shè)定哪個(gè)模塊為主模塊,而是通過電流的大小自動(dòng)排序,電流大的自然成為主模塊,“自主均流法”因此而得名。

3 220/10A整流模塊

筆者設(shè)計(jì)了一個(gè)220V/40A高頻開關(guān)電源,可用于發(fā)電廠、變電所、變電站等電力控制的直流屏系統(tǒng)。該設(shè)計(jì)方案采用4個(gè)220V/10A模塊并聯(lián)來實(shí)現(xiàn)模塊間的自主均流,從而為電力系統(tǒng)提供了一種重量更輕、體積更小、效率更高、安全性更好的整流模塊實(shí)現(xiàn)方案。由于篇幅所限,本文只介紹220V/10A整流模塊的實(shí)現(xiàn)方法。

高頻開關(guān)電源性能優(yōu)于相控整流電源,它能否得到廣泛工業(yè)應(yīng)用的關(guān)鍵是其可靠性,特別是當(dāng)輸出直流電壓較高時(shí)應(yīng)能可靠工作。除元器件及生產(chǎn)工藝等因素外,開關(guān)電源的可靠性主要取決于其主電路拓?fù)浣Y(jié)構(gòu)及控制方法。在設(shè)計(jì)該電源模塊時(shí),筆者選用了可靠性很高的三相電流型PWM整流器來完成三相功率因數(shù)校正及移相全橋諧振拓?fù)洌瑥亩鴮?shí)現(xiàn)DC/DC轉(zhuǎn)換;PWM控制則采用電流型控制方法來實(shí)現(xiàn)。

3.1 三相PWM整流器

圖1所示是一種三相PWM整流器的主電路,該電路的每個(gè)橋臂均由2只IGBT和2只二極管組成。其中IGBT的驅(qū)動(dòng)脈沖采用正弦PWM調(diào)制脈沖,這樣,輸入電流和輸出調(diào)制電壓Vd中就只含下式所示的諧波:

式中:Id為輸出電感中的電流;Vl為輸入線電壓有效值:P為0~60°區(qū)間內(nèi)的脈沖數(shù);M為調(diào)制系數(shù),M=Uo/Um。

PWM整流器具有輸入功率因數(shù)高,輸入電流的低次諧波電流含量少,PWM調(diào)制脈沖易實(shí)現(xiàn)以及成本低等優(yōu)點(diǎn)。

3.2 全橋DC/DC變換器

a.主電路拓?fù)?/p>

根據(jù)該高頻開關(guān)電源的輸出功率較大(220V、10A)且工作頻率較高(100kHz)等實(shí)際情況,筆者選用了全橋隔離式PWM變換器,圖2是其電路圖。

這種線路的優(yōu)點(diǎn)有二:一是主變換器只需一個(gè)原邊繞組,通過正、反向電壓即可得到正、反向磁通,副邊繞組采用全橋全波整流輸出。因此變壓器鐵芯和繞組可得到最佳利用,從而使效率密度得到提高。二是功率開關(guān)可在非常安全的情況下運(yùn)行。

b.控制與保護(hù)

DC/DC變換器采用峰值電流型PWM控制,并采用自主均流法實(shí)現(xiàn)多個(gè)模塊并聯(lián)運(yùn)行時(shí)的均流控制。這種均流控制方法與電源模塊數(shù)目無關(guān),且任意1個(gè)模塊發(fā)生故障或退出運(yùn)行時(shí),均不影響其它模塊的均流功能,從而真正實(shí)現(xiàn)了N+1冗余運(yùn)行。

PWM脈沖寬度調(diào)制開關(guān)變換器的控制芯片采用UC3875移相專業(yè)控制芯片,該芯片主要應(yīng)用于全橋變換器電路。它有電壓型和電流型控制模式可供選擇。UC3875具有限流、輸入過壓、輸出過壓、輸入欠壓等保護(hù)功能。自動(dòng)均流電路采用以最大電流自動(dòng)均流法為原理的集成均流芯片UC3907,應(yīng)用UC3907可以調(diào)節(jié)電源模塊的電壓并實(shí)現(xiàn)并聯(lián)模塊間的均流。

    用于電力系統(tǒng)中的高頻開關(guān)電源可滿足的技術(shù)指標(biāo)如下:

輸入交流電壓:380V;

紋波系數(shù):≤0.5%;

電網(wǎng)頻率:50Hz;

功率因數(shù):≥0.9;

輸出直流電壓:220V;

穩(wěn)壓精度:≤0.5%;

模塊輸出電流:10A;

穩(wěn)流精度:≤0.5%;

整機(jī)輸出電流:40A

均流不平衡度:≤0.5%。

開關(guān)電源模塊范文第3篇

【關(guān)鍵詞】廣電;專用饋電轉(zhuǎn)換電源裝置;設(shè)計(jì);使用

中圖分類號:TM72文獻(xiàn)標(biāo)識碼A文章編號1006-0278(2015)09-146-01

我國的饋電開關(guān)保護(hù)技術(shù)起步于20世紀(jì)50年代,經(jīng)歷了模仿蘇美、西歐等先進(jìn)國家的產(chǎn)品到自主開發(fā)、非智能化到智能化的發(fā)展歷程,饋電開關(guān)保護(hù)裝置為井下低壓供電提供了有力保障。目前,在廣播電視雙向網(wǎng)改造過程中,需要在網(wǎng)絡(luò)節(jié)點(diǎn)上安裝雙向網(wǎng)終端設(shè)備,由于戶外施工情況復(fù)雜,許多最佳改造位置無法取得220V電源供設(shè)備使用,重新選擇節(jié)點(diǎn)增加了改造成本和復(fù)雜度。

一、廣電專用饋電轉(zhuǎn)換電源裝置的結(jié)構(gòu)原理

實(shí)用新型廣電專用饋電轉(zhuǎn)換裝置內(nèi)部功能模塊包括:將同軸電纜輸入的30~60VAC電源轉(zhuǎn)換為直流電壓的交直流轉(zhuǎn)換模塊、通過開關(guān)電源將寬電壓范圍的低壓直流轉(zhuǎn)換為穩(wěn)定的高壓直流輸出的開關(guān)電源模塊、將穩(wěn)定的高壓直流通過逆變器轉(zhuǎn)換為穩(wěn)定的220VAC輸出的逆變模塊。逆變模塊的輸出端與EPON+EoC遠(yuǎn)端設(shè)備(如EoC、ONU、小型交換機(jī))的220VAC插座相連。

當(dāng)同軸電纜饋送輸入電壓由于線路衰減電壓變化范圍達(dá)30~60VAC時(shí),通過交直流轉(zhuǎn)換模塊內(nèi)部的橋式整流、電容電感濾波扼流以及輸入高壓保護(hù)電路等,轉(zhuǎn)換為高低變化的低壓直流。低壓直流輸入開關(guān)電源模塊,開關(guān)電源通過內(nèi)部電壓檢測和反饋電路,自動(dòng)調(diào)節(jié)振蕩脈寬或頻率,達(dá)到輸出電壓穩(wěn)定的目的,輸出穩(wěn)定的200VDC直流高壓。逆變轉(zhuǎn)換模塊的功能是將直流高壓通過50Hz脈沖震蕩電路調(diào)制并通過電容電感充放電輸出220VAC交流正弦波,最終輸出穩(wěn)定的供設(shè)備使用的工頻電壓。新型饋電轉(zhuǎn)換裝置采用高頻電子器件,自身能耗低,在空載時(shí)功耗低于3W。由于沒有笨重的變壓器,新型轉(zhuǎn)換裝置體積小便于在狹小箱體柜內(nèi)安裝。新型轉(zhuǎn)換裝置采用的開關(guān)電源和逆變技術(shù),自身輻射小,工作頻率遠(yuǎn)低于傳輸信號頻率,不會(huì)對電視信號和數(shù)字信號產(chǎn)生輻射干擾。該新型裝置工作時(shí),室外工作環(huán)境適應(yīng)性強(qiáng),當(dāng)輸入電壓、負(fù)載、環(huán)境溫度、濕度、氣壓在一定范圍內(nèi)變化時(shí),可自動(dòng)檢測和矯正并輸出穩(wěn)定的220VAC電壓。該轉(zhuǎn)換電源裝置的單個(gè)成本在200元以內(nèi),批量生產(chǎn)成本可大幅度降低。裝置內(nèi)部模塊采用的開關(guān)電源技術(shù)和逆變電源技術(shù)是公知的成熟技術(shù)。

二、廣電專用饋電轉(zhuǎn)換電源裝置的設(shè)計(jì)和使用

(一)廣電專用饋電轉(zhuǎn)換電源裝置的結(jié)構(gòu)設(shè)計(jì)

圖1是實(shí)用新型廣電專用饋電轉(zhuǎn)換裝置的結(jié)構(gòu)框圖,其中饋電設(shè)備為遠(yuǎn)端低壓饋電器。饋電轉(zhuǎn)換電源由交直流模塊、開關(guān)電源模塊、逆變轉(zhuǎn)換模塊三大功能模塊組成。用電設(shè)備為ONU、EoC等用戶局端設(shè)備以及小型交換機(jī)。饋電轉(zhuǎn)換裝置具有饋電和信號環(huán)出功能接口,可繼續(xù)給下級放大器供給饋電和信號。

(二)廣電專用饋電轉(zhuǎn)換電源裝置的使用效果

在饋電轉(zhuǎn)換電源裝置的實(shí)際使用中,輸出功率受內(nèi)部開關(guān)晶體管功率、饋送同軸電纜的阻值、饋電器內(nèi)阻(功率)影響,如遠(yuǎn)端饋電器距離饋電轉(zhuǎn)換電源裝置較遠(yuǎn)時(shí),饋送入饋電轉(zhuǎn)換裝置的電壓達(dá)不到30VAC,就需要采用內(nèi)阻較小、功率較大的饋電器,也可將饋電器向前級移動(dòng),減少兩設(shè)備間距離,或者采用更大外徑、內(nèi)阻更小的同軸電纜。我單位在實(shí)際使用的新型饋電轉(zhuǎn)換裝置自身與負(fù)載功率合計(jì)小于100W,按照有線電視一臺(tái)4模塊放大器功率一般在100W以上相比較,饋電轉(zhuǎn)換電源對線路影響小,完全可以通過線路調(diào)整實(shí)現(xiàn)對雙向網(wǎng)設(shè)備的供電。采用饋電轉(zhuǎn)換電源,還適用于間歇性停電、外電電壓不穩(wěn)易造成用電設(shè)備損壞的環(huán)境,只要同軸電纜饋電正常,就可以采用遠(yuǎn)端饋送的低壓交流電轉(zhuǎn)換為穩(wěn)定持續(xù)的220VAC輸出。饋電轉(zhuǎn)換電源還可以作為有線電視工作者在網(wǎng)絡(luò)施工檢修中應(yīng)急電源使用,可以為筆記本電腦等設(shè)備充電,為光纖熔接機(jī)提供電源,為光纖和電纜檢修測試儀器提供臨時(shí)用電。

三、結(jié)語

總而言之,根據(jù)當(dāng)前饋電開關(guān)保護(hù)技術(shù)存在的問題,采用饋電轉(zhuǎn)換電源,可以采用遠(yuǎn)端饋送的低壓交流電轉(zhuǎn)換為穩(wěn)定持續(xù)的220VAC輸出,并能夠進(jìn)一步作為有線電視工作者在網(wǎng)絡(luò)施工檢修中應(yīng)急電源使用,為光纖和電纜檢修測試儀器提供臨時(shí)用電,為廣電電網(wǎng)安全可靠的運(yùn)行提供了有力保障。

參考文獻(xiàn):

開關(guān)電源模塊范文第4篇

摘要:開關(guān)電源高頻小型

1引言

隨著電力電子技術(shù)的告訴發(fā)展,電力電子設(shè)備和人們的工作、生活的關(guān)系日益密切,而電子設(shè)備都離不開可靠的電源,進(jìn)入80年代計(jì)算機(jī)電源全面實(shí)現(xiàn)了開關(guān)電源化,率先完成計(jì)算機(jī)的電源換代,進(jìn)入90年代開關(guān)電源相繼進(jìn)入各種電子、電器設(shè)備領(lǐng)域,程控交換機(jī)、通訊、電子檢測設(shè)備電源、控制設(shè)備電源等都已廣泛地使用了開關(guān)電源,更促進(jìn)了開關(guān)電源技術(shù)的迅速發(fā)展。開關(guān)電源是利用現(xiàn)代電力電子技術(shù),控制開關(guān)晶體管開通和關(guān)斷的時(shí)間比率,維持穩(wěn)定輸出電壓的一種電源,開關(guān)電源一般由脈沖寬度調(diào)制(PWM)控制IC和MOSFET構(gòu)成。開關(guān)電源和線性電源相比,二者的成本都隨著輸出功率的增加而增長,但二者增長速率各異。線性電源成本在某一輸出功率點(diǎn)上,反而高于開關(guān)電源,這一成本反轉(zhuǎn)點(diǎn)。隨著電力電子技術(shù)的發(fā)展和創(chuàng)新,使得開關(guān)電源技術(shù)在不斷地創(chuàng)新,這一成本反轉(zhuǎn)點(diǎn)日益向低輸出電力端移動(dòng),這為開關(guān)電源提供了廣泛的發(fā)展空間。

開關(guān)電源高頻化是其發(fā)展的方向,高頻化使開關(guān)電源小型化,并使開關(guān)電源進(jìn)入更廣泛的應(yīng)用領(lǐng)域,非凡是在高新技術(shù)領(lǐng)域的應(yīng)用,推動(dòng)了高新技術(shù)產(chǎn)品的小型化、輕便化。另外開關(guān)電源的發(fā)展和應(yīng)用在節(jié)約能源、節(jié)約資源及保護(hù)環(huán)境方面都具有重要的意義。

2開關(guān)電源的分類

人們的開關(guān)電源技術(shù)領(lǐng)域是邊開發(fā)相關(guān)電力電子器件,邊開發(fā)開關(guān)變頻技術(shù),兩者相互促進(jìn)推動(dòng)著開關(guān)電源每年以超過兩位數(shù)字的增長率向著輕、小、薄、低噪聲、高可靠、抗干擾的方向發(fā)展。開關(guān)電源可分為AC/DC和DC/DC兩大類,DC/DC變換器現(xiàn)已實(shí)現(xiàn)模塊化,且設(shè)計(jì)技術(shù)及生產(chǎn)工藝在國內(nèi)外均已成熟和標(biāo)準(zhǔn)化,并已得到用戶的認(rèn)可,但AC/DC的模塊化,因其自身的特性使得在模塊化的進(jìn)程中,碰到較為復(fù)雜的技術(shù)和工藝制造新問題。以下分別對兩類開關(guān)電源的結(jié)構(gòu)和特性作以闡述。

2.1DC/DC變換

DC/DC變換是將固定的直流電壓變換成可變的直流電壓,也稱為直流斬波。斬波器的工作方式有兩種,一是脈寬調(diào)制方式Ts不變,改變ton(通用),二是頻率調(diào)制方式,ton不變,改變Ts(易產(chǎn)生干擾)。其具體的電路由以下幾類摘要:

(1)Buck電路——降壓斬波器,其輸出平均電壓Uo小于輸入電壓Ui,極性相同。

(2)Boost電路——升壓斬波器,其輸出平均電壓Uo大于輸入電壓Ui,極性相同。

(3)Buck-Boost電路——降壓或升壓斬波器,其輸出平均電壓Uo大于或小于輸入電壓Ui,極性相反,電感傳輸。

(4)Cuk電路——降壓或升壓斬波器,其輸出平均電壓Uo大于或小于輸入電壓UI,極性相反,電容傳輸。

當(dāng)今軟開關(guān)技術(shù)使得DC/DC發(fā)生了質(zhì)的飛躍,美國VICOR公司設(shè)計(jì)制造的多種ECI軟開關(guān)DC/DC變換器,其最大輸出功率有300W、600W、800W等,相應(yīng)的功率密度為(6、2、10、17)W/cm3,效率為(80-90)%。日本NemicLambda公司最新推出的一種采用軟開關(guān)技術(shù)的高頻開關(guān)電源模塊RM系列,其開關(guān)頻率為(200~300)kHz,功率密度已達(dá)到27W/cm3,采用同步整流器(MOS-FET代替肖特基二極管),是整個(gè)電路效率提高到90%。

2.2AC/DC變換

AC/DC變換是將交流變換為直流,其功率流向可以是雙向的,功率流由電源流向負(fù)載的稱為“整流”,功率流由負(fù)載返回電源的稱為“有源逆變”。AC/DC變換器輸入為50/60Hz的交流電,因必須經(jīng)整流、濾波,因此體積相對較大的濾波電容器是必不可少的,同時(shí)因碰到平安標(biāo)準(zhǔn)(如UL、CCEE等)及EMC指令的限制(如IEC、FCC、CSA),交流輸入側(cè)必須加EMC濾波及使用符合平安標(biāo)準(zhǔn)的元件,這樣就限制AC/DC電源體積的小型化,另外,由于內(nèi)部的高頻、高壓、大電流開關(guān)動(dòng)作,使得解決EMC電磁兼容新問題難度加大,也就對內(nèi)部高密度安裝電路設(shè)計(jì)提出了很高的要求,由于同樣的原因,高電壓、大電流開關(guān)使得電源工作消耗增大,限制了AC/DC變換器模塊化的進(jìn)程,因此必須采用電源系統(tǒng)優(yōu)化設(shè)計(jì)方法才能使其工作效率達(dá)到一定的滿足程度。

AC/DC變換按電路的接線方式可分為,半波電路、全波電路。按電源相數(shù)可分為,單項(xiàng)、三相、多相。按電路工作象限又可分為一象限、二象限、三象限、四象限。

3開關(guān)電源的選用

開關(guān)電源在輸入抗干擾性能上,由于其自身電路結(jié)構(gòu)的特征(多級串聯(lián)),一般的輸入干擾如浪涌電壓很難通過,在輸出電壓穩(wěn)定度這一技術(shù)指標(biāo)上和線性電源相比具有較大的優(yōu)勢,其輸出電壓穩(wěn)定度可達(dá)(0.5~1)%。開關(guān)電源模塊作為一種電力電子集成器件,在選用中應(yīng)注重以下幾點(diǎn)摘要:

3.1輸出電流的選擇

因開關(guān)電源工作效率高,一般可達(dá)到80%以上,故在其輸出電流的選擇上,應(yīng)準(zhǔn)確測量或計(jì)算用電設(shè)備的最大吸收電流,以使被選用的開關(guān)電源具有高的性能價(jià)格比,通常輸出計(jì)算公式為摘要:

Is=KIf

式中摘要:Is—開關(guān)電源的額定輸出電流;

If—用電設(shè)備的最大吸收電流;

K—裕量系數(shù),一般取1.5~1.8;

3.2接地

開關(guān)電源比線性電源會(huì)產(chǎn)生更多的干擾,對共模干擾敏感的用電設(shè)備,應(yīng)采取接地和屏蔽辦法,按ICE1000.EN61000.FCC等EMC限制,外形開關(guān)電源均采取EMC電磁兼容辦法,因此開關(guān)電源一般應(yīng)帶有EMC電磁兼容濾波器。如利德華福技術(shù)的HA系列開關(guān)電源,將其FG端子接大地或接用戶機(jī)殼,方能滿足上述電磁兼容的要求。

3.3保護(hù)電路

開關(guān)電源在設(shè)計(jì)中必須具有過流、過熱、短路等保護(hù)功能,故在設(shè)計(jì)時(shí)應(yīng)首選保護(hù)功能齊備的開關(guān)電源模塊,并且其保護(hù)電路的技術(shù)參數(shù)應(yīng)和用電設(shè)備的工作特性相匹配,以避免損壞用電設(shè)備或開關(guān)電源。

4開關(guān)電源技術(shù)的發(fā)展動(dòng)向

開關(guān)電源的發(fā)展方向是高頻、高可靠、低耗、低噪聲、抗干擾和模塊化。由于開關(guān)電源輕、小、薄的關(guān)鍵技術(shù)是高頻化,因此國外各大開關(guān)電源制造商都致力于同步開發(fā)新型高智能化的元器件,非凡是改善二次整流器件的損耗,并在功率鐵氧體(Mn-Zn)材料上加大科技創(chuàng)新,以提高在高頻率和較大磁通密度(Bs)下獲得高的磁性能,而電容器的小型化也是一項(xiàng)關(guān)鍵技術(shù)。SMT技術(shù)的應(yīng)用使得開關(guān)電源取得了長足的進(jìn)展,在電路板兩面布置元器件,以確保開關(guān)電源的輕、小、薄。開關(guān)電源的高頻化就必然對傳統(tǒng)的PWM開關(guān)技術(shù)進(jìn)行創(chuàng)新,實(shí)現(xiàn)ZVS、ZCS的軟開關(guān)技術(shù)已成為開關(guān)電源的主流技術(shù),并大幅提高了開關(guān)電源工作效率。對于高可靠性指標(biāo),美國的開關(guān)電源生產(chǎn)商通過降低運(yùn)行電流,降低結(jié)溫等辦法以減少器件的應(yīng)力,使得產(chǎn)品的的可靠性大大提高。

開關(guān)電源模塊范文第5篇

現(xiàn)代電源技術(shù)是應(yīng)用電力電子半導(dǎo)體器件,綜合自動(dòng)控制、計(jì)算機(jī)(微處理器)技術(shù)和電磁技術(shù)的多學(xué)科邊緣交又技術(shù)。在各種高質(zhì)量、高效、高可靠性的電源中起關(guān)鍵作用,是現(xiàn)代電力電子技術(shù)的具體應(yīng)用。

當(dāng)前,電力電子作為節(jié)能、節(jié)才、自動(dòng)化、智能化、機(jī)電一體化的基礎(chǔ),正朝著應(yīng)用技術(shù)高頻化、硬件結(jié)構(gòu)模塊化、產(chǎn)品性能綠色化的方向發(fā)展。在不遠(yuǎn)的將來,電力電子技術(shù)將使電源技術(shù)更加成熟、經(jīng)濟(jì)、實(shí)用,實(shí)現(xiàn)高效率和高品質(zhì)用電相結(jié)合。

一、電力電子技術(shù)的發(fā)展

現(xiàn)代電力電子技術(shù)的發(fā)展方向,是從以低頻技術(shù)處理問題為主的傳統(tǒng)電力電子學(xué),向以高頻技術(shù)處理問題為主的現(xiàn)代電力電子學(xué)方向轉(zhuǎn)變。電力電子技術(shù)起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時(shí)代、逆變器時(shí)代和變頻器時(shí)代,并促進(jìn)了電力電子技術(shù)在許多新領(lǐng)域的應(yīng)用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導(dǎo)體復(fù)合器件,表明傳統(tǒng)電力電子技術(shù)已經(jīng)進(jìn)入現(xiàn)代電力電子時(shí)代。

1.1整流器時(shí)代

大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機(jī)提供,但是大約20%的電能是以直流形式消費(fèi)的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機(jī)車、電傳動(dòng)的內(nèi)燃機(jī)車、地鐵機(jī)車、城市無軌電車等)和直流傳動(dòng)(軋鋼、造紙等)三大領(lǐng)域。大功率硅整流器能夠高效率地把工頻交流電轉(zhuǎn)變?yōu)橹绷麟姡虼嗽诹甏推呤甏?,大功率硅整流管和晶閘管的開發(fā)與應(yīng)用得以很大發(fā)展。當(dāng)時(shí)國內(nèi)曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導(dǎo)體廠家就是那時(shí)的產(chǎn)物。

1.2逆變器時(shí)代

七十年代出現(xiàn)了世界范圍的能源危機(jī),交流電機(jī)變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調(diào)速的關(guān)鍵技術(shù)是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調(diào)速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關(guān)斷晶閘管(GT0)成為當(dāng)時(shí)電力電子器件的主角。類似的應(yīng)用還包括高壓直流輸出,靜止式無功功率動(dòng)態(tài)補(bǔ)償?shù)取_@時(shí)的電力電子技術(shù)已經(jīng)能夠?qū)崿F(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內(nèi)。

1.3變頻器時(shí)代

進(jìn)入八十年代,大規(guī)模和超大規(guī)模集成電路技術(shù)的迅猛發(fā)展,為現(xiàn)代電力電子技術(shù)的發(fā)展奠定了基礎(chǔ)。將集成電路技術(shù)的精細(xì)加工技術(shù)和高壓大電流技術(shù)有機(jī)結(jié)合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導(dǎo)致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機(jī)遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉(zhuǎn)化的標(biāo)志。據(jù)統(tǒng)計(jì),到1995年底,功率M0SFET和GTR在功率半導(dǎo)體器件市場上已達(dá)到平分秋色的地步,而用IGBT代替GTR在電力電子領(lǐng)域巳成定論。新型器件的發(fā)展不僅為交流電機(jī)變頻調(diào)速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術(shù)不斷向高頻化發(fā)展,為用電設(shè)備的高效節(jié)材節(jié)能,實(shí)現(xiàn)小型輕量化,機(jī)電一體化和智能化提供了重要的技術(shù)基礎(chǔ)。

二、現(xiàn)代電力電子的應(yīng)用領(lǐng)域

2.1計(jì)算機(jī)高效率綠色電源

高速發(fā)展的計(jì)算機(jī)技術(shù)帶領(lǐng)人類進(jìn)入了信息社會(huì),同時(shí)也促進(jìn)了電源技術(shù)的迅速發(fā)展。八十年代,計(jì)算機(jī)全面采用了開關(guān)電源,率先完成計(jì)算機(jī)電源換代。接著開關(guān)電源技術(shù)相繼進(jìn)人了電子、電器設(shè)備領(lǐng)域。

計(jì)算機(jī)技術(shù)的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個(gè)人電腦和相關(guān)產(chǎn)品,綠色電源系指與綠色電腦相關(guān)的高效省電電源,根據(jù)美國環(huán)境保護(hù)署l992年6月17日“能源之星"計(jì)劃規(guī)定,桌上型個(gè)人電腦或相關(guān)的設(shè)備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關(guān)電源而言,電源自身要消耗50瓦的能源。

2.2通信用高頻開關(guān)電源

通信業(yè)的迅速發(fā)展極大的推動(dòng)了通信電源的發(fā)展。高頻小型化的開關(guān)電源及其技術(shù)已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領(lǐng)域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標(biāo)稱值為48V的直流電源。目前在程控交換機(jī)用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關(guān)電源取代,高頻開關(guān)電源(也稱為開關(guān)型整流器SMR)通過MOSFET或IGBT的高頻工作,開關(guān)頻率一般控制在50-100kHz范圍內(nèi),實(shí)現(xiàn)高效率和小型化。近幾年,開關(guān)整流器的功率容量不斷擴(kuò)大,單機(jī)容量己從48V/12.5A、48V/20A擴(kuò)大到48V/200A、48V/400A。

因通信設(shè)備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護(hù),且安裝、增加非常方便。一般都可直接裝在標(biāo)準(zhǔn)控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

2.3直流-直流(DC/DC)變換器

DC/DC變換器將一個(gè)固定的直流電壓變換為可變的直流電壓,這種技術(shù)被廣泛應(yīng)用于無軌電車、地鐵列車、電動(dòng)車的無級變速和控制,同時(shí)使上述控制獲得加速平穩(wěn)、快速響應(yīng)的性能,并同時(shí)收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調(diào)壓的作用(開關(guān)電源),同時(shí)還能起到有效地抑制電網(wǎng)側(cè)諧波電流噪聲的作用。

通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術(shù),開關(guān)頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實(shí)現(xiàn)小型化,因此就要不斷提高開關(guān)頻率和采用新的電路拓?fù)浣Y(jié)構(gòu),目前已有一些公司研制生產(chǎn)了采用零電流開關(guān)和零電壓開關(guān)技術(shù)的二次電源模塊,功率密度有較大幅度的提高。

2.4不間斷電源(UPS)

不間斷電源(UPS)是計(jì)算機(jī)、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉(zhuǎn)換開關(guān)送到負(fù)載。為了在逆變器故障時(shí)仍能向負(fù)載提供能量,另一路備用電源通過電源轉(zhuǎn)換開關(guān)來實(shí)現(xiàn)。

現(xiàn)代UPS普遍了采用脈寬調(diào)制技術(shù)和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術(shù)的引入,可以實(shí)現(xiàn)對UPS的智能化管理,進(jìn)行遠(yuǎn)程維護(hù)和遠(yuǎn)程診斷。

目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。

2.5變頻器電源

變頻器電源主要用于交流電機(jī)的變頻調(diào)速,其在電氣傳動(dòng)系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅(qū)動(dòng)交流異步電動(dòng)機(jī)實(shí)現(xiàn)無級調(diào)速。

國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調(diào)速技術(shù)應(yīng)用于空調(diào)器中。至1997年,其占有率已達(dá)到日本家用空調(diào)的70%以上。變頻空調(diào)具有舒適、節(jié)能等優(yōu)點(diǎn)。國內(nèi)于90年代初期開始研究變頻空調(diào),96年引進(jìn)生產(chǎn)線生產(chǎn)變頻空調(diào)器,逐漸形成變頻空調(diào)開發(fā)生產(chǎn)熱點(diǎn)。預(yù)計(jì)到2000年左右將形成。變頻空調(diào)除了變頻電源外,還要求有適合于變頻調(diào)速的壓縮機(jī)電機(jī)。優(yōu)化控制策略,精選功能組件,是空調(diào)變頻電源研制的進(jìn)一步發(fā)展方向。

2.6高頻逆變式整流焊機(jī)電源

高頻逆變式整流焊機(jī)電源是一種高性能、高效、省材的新型焊機(jī)電源,代表了當(dāng)今焊機(jī)電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應(yīng)用前景。

逆變焊機(jī)電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。

由于焊機(jī)電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機(jī)電源的工作可靠性問題成為最關(guān)鍵的問題,也是用戶最關(guān)心的問題。采用微處理器做為脈沖寬度調(diào)制(PWM)的相關(guān)控制器,通過對多參數(shù)、多信息的提取與分析,達(dá)到預(yù)知系統(tǒng)各種工作狀態(tài)的目的,進(jìn)而提前對系統(tǒng)做出調(diào)整和處理,解決了目前大功率IGBT逆變電源可靠性。

國外逆變焊機(jī)已可做到額定焊接電流300A,負(fù)載持續(xù)率60%,全載電壓60~75V,電流調(diào)節(jié)范圍5~300A,重量29kg。

2.7大功率開關(guān)型高壓直流電源

大功率開關(guān)型高壓直流電源廣泛應(yīng)用于靜電除塵、水質(zhì)改良、醫(yī)用X光機(jī)和CT機(jī)等大型設(shè)備。電壓高達(dá)50~l59kV,電流達(dá)到0.5A以上,功率可達(dá)100kW。

自從70年代開始,日本的一些公司開始采用逆變技術(shù),將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進(jìn)入80年代,高頻開關(guān)電源技術(shù)迅速發(fā)展。德國西門子公司采用功率晶體管做主開關(guān)元件,將電源的開關(guān)頻率提高到20kHz以上。并將干式變壓器技術(shù)成功的應(yīng)用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進(jìn)一步減小。

國內(nèi)對靜電除塵高壓直流電源進(jìn)行了研制,市電經(jīng)整流變?yōu)橹绷鳎捎萌珮蛄汶娏鏖_關(guān)串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負(fù)載條件下,輸出直流電壓達(dá)到55kV,電流達(dá)到15mA,工作頻率為25.6kHz。

2.8電力有源濾波器

傳統(tǒng)的交流-直流(AC-DC)變換器在投運(yùn)時(shí),將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時(shí)還出現(xiàn)裝置網(wǎng)側(cè)功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時(shí),網(wǎng)側(cè)三次諧波含量可達(dá)(70~80)%,網(wǎng)側(cè)功率因數(shù)僅有0.5~0.6。

電力有源濾波器是一種能夠動(dòng)態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關(guān)功率變換器和具體控制電路構(gòu)成。與傳統(tǒng)開關(guān)電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準(zhǔn)信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。

2.9分布式開關(guān)電源供電系統(tǒng)

分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)模控制集成電路作基本部件,利用最新理論和技術(shù)成果,組成積木式、智能化的大功率供電電源,從而使強(qiáng)電與弱電緊密結(jié)合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。

八十年代初期,對分布式高頻開關(guān)電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術(shù)的研究上。八十年代中后期,隨著高頻功率變換技術(shù)的迅述發(fā)展,各種變換器拓?fù)浣Y(jié)構(gòu)相繼出現(xiàn),結(jié)合大規(guī)模集成電路和功率元器件技術(shù),使中小功率裝置的集成成為可能,從而迅速地推動(dòng)了分布式高頻開關(guān)電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學(xué)界的研究熱點(diǎn),論文數(shù)量逐年增加,應(yīng)用領(lǐng)域不斷擴(kuò)大。

分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟(jì)和維護(hù)方便等優(yōu)點(diǎn)。已被大型計(jì)算機(jī)、通信設(shè)備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機(jī)車牽引電源、中頻感應(yīng)加熱電源、電動(dòng)機(jī)驅(qū)動(dòng)電源等領(lǐng)域也有廣闊的應(yīng)用前景。

三、高頻開關(guān)電源的發(fā)展趨勢

在電力電子技術(shù)的應(yīng)用及各種電源系統(tǒng)中,開關(guān)電源技術(shù)均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關(guān)電源技術(shù),其體積和重量都會(huì)大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動(dòng)汽車和變頻傳動(dòng)中,更是離不開開關(guān)電源技術(shù),通過開關(guān)電源改變用電頻率,從而達(dá)到近于理想的負(fù)載匹配和驅(qū)動(dòng)控制。高頻開關(guān)電源技術(shù),更是各種大功率開關(guān)電源(逆變焊機(jī)、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術(shù)。

3.1高頻化

理論分析和實(shí)踐經(jīng)驗(yàn)表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當(dāng)我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設(shè)備的體積重量大體下降至工頻設(shè)計(jì)的5~l0%。無論是逆變式整流焊機(jī),還是通訊電源用的開關(guān)式整流器,都是基于這一原理。同樣,傳統(tǒng)“整流行業(yè)”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進(jìn)行改造,成為“開關(guān)變換類電源”,其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設(shè)備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟(jì)效益,更可體現(xiàn)技術(shù)含量的價(jià)值。

3.2模塊化

模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關(guān)器件和與之反并聯(lián)的續(xù)流二極管,實(shí)質(zhì)上都屬于“標(biāo)準(zhǔn)”功率模塊(SPM)。近年,有些公司把開關(guān)器件的驅(qū)動(dòng)保護(hù)電路也裝到功率模塊中去,構(gòu)成了“智能化”功率模塊(IPM),不但縮小了整機(jī)的體積,更方便了整機(jī)的設(shè)計(jì)制造。實(shí)際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴(yán)重,對器件造成更大的電應(yīng)力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了“用戶專用”功率模塊(ASPM),它把一臺(tái)整機(jī)的幾乎所有硬件都以芯片的形式安裝到一個(gè)模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴(yán)格、合理的熱、電、機(jī)械方面的設(shè)計(jì),達(dá)到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個(gè)模塊固定在相應(yīng)的散熱器上,就構(gòu)成一臺(tái)新型的開關(guān)電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機(jī)體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應(yīng)力降至最低,提高系統(tǒng)的可靠性。另外,大功率的開關(guān)電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個(gè)獨(dú)立的模塊單元并聯(lián)工作,采用均流技術(shù),所有模塊共同分擔(dān)負(fù)載電流,一旦其中某個(gè)模塊失效,其它模塊再平均分擔(dān)負(fù)載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個(gè)系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會(huì)影響系統(tǒng)的正常工作,而且為修復(fù)提供充分的時(shí)間。

3.3數(shù)字化

在傳統(tǒng)功率電子技術(shù)中,控制部分是按模擬信號來設(shè)計(jì)和工作的。在六、七十年代,電力電子技術(shù)完全是建立在模擬電路基礎(chǔ)上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術(shù)日趨完善成熟,顯示出越來越多的優(yōu)點(diǎn):便于計(jì)算機(jī)處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調(diào)試和遙感遙測遙調(diào),也便于自診斷、容錯(cuò)等技術(shù)的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設(shè)計(jì)來說,模擬技術(shù)還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術(shù)的知識,但是對于智能化的開關(guān)電源,需要用計(jì)算機(jī)控制時(shí),數(shù)字化技術(shù)就離不開了。

3.4綠色化

電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電,這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網(wǎng)產(chǎn)生污染,國際電工委員會(huì)(IEC)對此制定了一系列標(biāo)準(zhǔn),如IEC555、IEC917、IECl000等。事實(shí)上,許多功率電子節(jié)電設(shè)備,往往會(huì)變成對電網(wǎng)的污染源:向電網(wǎng)注入嚴(yán)重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀(jì)末,各種有源濾波器和有源補(bǔ)償器的方案誕生,有了多種修正功率因數(shù)的方法。這些為2l世紀(jì)批量生產(chǎn)各種綠色開關(guān)電源產(chǎn)品奠定了基礎(chǔ)。

南木林县| 晋城| 右玉县| 磐安县| 吐鲁番市| 四会市| 北流市| 碌曲县| 金门县| 康平县| 辽阳市| 梓潼县| 广宁县| 青海省| 资源县| 桓仁| 二连浩特市| 合水县| 长丰县| 永城市| 贵州省| 襄垣县| 安阳县| 红原县| 玉田县| 兴化市| 辽阳县| 文水县| 浙江省| 大埔县| 体育| 广州市| 崇明县| 淳安县| 临潭县| 加查县| 阿拉尔市| 城固县| 灌云县| 剑河县| 宁河县|