前言:想要寫(xiě)出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇數(shù)學(xué)建模論文范文,相信會(huì)為您的寫(xiě)作帶來(lái)幫助,發(fā)現(xiàn)更多的寫(xiě)作思路和靈感。
在過(guò)去常規(guī)的數(shù)學(xué)分析教學(xué)課程只要以公式推導(dǎo)、定理證明為主要教學(xué)內(nèi)容,卻對(duì)數(shù)學(xué)分析的應(yīng)用思想以及融合貫通少有講授。這就導(dǎo)致學(xué)生們雖熟練掌握這門(mén)課程的理論知識(shí),但是學(xué)生們將掌握的知識(shí)應(yīng)用于實(shí)際問(wèn)題的解決過(guò)程中卻存在效果不滿(mǎn)意,或無(wú)法學(xué)以致用。因此學(xué)生會(huì)形成數(shù)學(xué)的掌握僅僅是為了考試而學(xué)習(xí),無(wú)現(xiàn)實(shí)意義等錯(cuò)誤思想。若在數(shù)學(xué)分析的教學(xué)過(guò)程中融合數(shù)學(xué)建模方式進(jìn)行教學(xué),利用數(shù)學(xué)建模思想來(lái)熏陶學(xué)生,通過(guò)通過(guò)將數(shù)學(xué)的意義思想完整的進(jìn)行介紹,將數(shù)學(xué)概念與公式的實(shí)際源頭與應(yīng)用情況進(jìn)行宣教,使學(xué)生充分了解數(shù)學(xué)與實(shí)際生活之間存在的密切關(guān)系。首先,通過(guò)利用數(shù)學(xué)建模思想融入數(shù)學(xué)分析的教學(xué)課程中可有效促進(jìn)學(xué)生數(shù)學(xué)的行使效果。適當(dāng)配合數(shù)學(xué)模型方式糅合數(shù)學(xué)分析的理論知識(shí)與實(shí)際方法,可幫助學(xué)生迅速理解數(shù)學(xué)分析的內(nèi)容概念,全面掌握理論知識(shí)與實(shí)踐能力。其次,利用數(shù)學(xué)建模思想促進(jìn)學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,以改善在教學(xué)過(guò)程中因理論性復(fù)雜、定義生澀難懂導(dǎo)致學(xué)生學(xué)習(xí)積極性不高以及枯燥乏味等數(shù)學(xué)教學(xué)問(wèn)題。因此,在數(shù)學(xué)分析的教學(xué)中融合數(shù)學(xué)建模教學(xué)方式具有巨大的應(yīng)用價(jià)值。
2數(shù)學(xué)建模思想在概念教學(xué)中的滲透
按照大范圍來(lái)講,數(shù)學(xué)分析的內(nèi)容中包含了函數(shù)、導(dǎo)數(shù)、積分等數(shù)學(xué)概念,這類(lèi)概念均屬于實(shí)際事物數(shù)量表現(xiàn)或空間形式概括而來(lái)的數(shù)學(xué)模型。在數(shù)學(xué)教學(xué)過(guò)程我們可以根據(jù)概念的具體事物原型或平時(shí)生活中易見(jiàn)到的事物進(jìn)行引用,讓學(xué)生了解到理論上的概念性知識(shí)不僅僅存在與課本中,更與日常生活中具有緊密的關(guān)系。對(duì)此,老師在教學(xué)相關(guān)概念知識(shí)時(shí),最好聯(lián)系實(shí)際,創(chuàng)造合適的學(xué)習(xí)環(huán)境,為學(xué)生在學(xué)習(xí)過(guò)程中通過(guò)適當(dāng)?shù)挠^察、想象、研究、驗(yàn)證等方式來(lái)主導(dǎo)學(xué)生的教學(xué)活動(dòng)。例如微積分教學(xué)中,剛開(kāi)始感覺(jué)其較為抽象籠統(tǒng),不過(guò)仔細(xì)觀察其形成過(guò)程會(huì)發(fā)現(xiàn)其實(shí)具有較多的基礎(chǔ)原型,通過(guò)旋轉(zhuǎn)體體積、曲邊梯形面積等具體問(wèn)題緊密聯(lián)系,應(yīng)用微元法求解即可得出積分這個(gè)較為抽象的概念。通過(guò)適當(dāng)?shù)娜〔?,建立概念模型,引?dǎo)學(xué)生對(duì)教學(xué)的積極興趣,可比簡(jiǎn)單的利用數(shù)學(xué)符號(hào)來(lái)描述抽象概念要具體生動(dòng)得多。
3數(shù)學(xué)建模思想在定理證明中的滲透
在數(shù)學(xué)分析課程中存在較多的定理,而怎樣在教學(xué)過(guò)程中讓學(xué)生熟練掌握帶來(lái)并應(yīng)用則成為目前數(shù)學(xué)分析教學(xué)中較為困難的。其實(shí)在書(shū)本中大部分定理是有著具體的意義,不過(guò)在通過(guò)籠統(tǒng)的刻印組書(shū)本中后導(dǎo)致定理創(chuàng)造者實(shí)際想法無(wú)法清晰表現(xiàn)在其中,致使學(xué)生在接受定理教學(xué)中感到茫然。對(duì)此,在定理教學(xué)過(guò)程老師應(yīng)結(jié)合該定理知識(shí)的源指出處以及歷史淵源,從而促進(jìn)學(xué)生的求知欲取進(jìn)一步了解該定理的意義與作用。同時(shí)應(yīng)用建模思想將定理作為模型的一類(lèi),利用前期設(shè)計(jì)的特定問(wèn)題引導(dǎo)學(xué)生逐步發(fā)現(xiàn)定理定論,通過(guò)這種方式讓學(xué)生在吸收定理知識(shí)的過(guò)程中體驗(yàn)到研究探索發(fā)現(xiàn)的重要性,為學(xué)生樹(shù)立的創(chuàng)新觀念。
4數(shù)學(xué)建模思想在課題中的滲透
數(shù)學(xué)分析教學(xué)中需要講解大量課題,通過(guò)對(duì)具有代表性的課題進(jìn)行講解以達(dá)到促進(jìn)應(yīng)用知識(shí)解題的能力并鞏固。但是在過(guò)去傳統(tǒng)的課題講解中,與應(yīng)用相關(guān)的問(wèn)題教學(xué)較少,僅有的少部分也是條件滿(mǎn)足解答肯定的情況,這不利于學(xué)生創(chuàng)新性思維培養(yǎng)。因此,在課題講解中盡量選取以具體應(yīng)用的問(wèn)題作為例題,設(shè)置相應(yīng)的問(wèn)題來(lái)引導(dǎo)學(xué)生發(fā)現(xiàn)其中存在的錯(cuò)誤,并結(jié)合自身知識(shí)來(lái)解決其錯(cuò)誤,通過(guò)建立模型的方式來(lái)進(jìn)一步鞏固自身知識(shí)。
5數(shù)學(xué)建模思想在考試命題中的滲透
目前數(shù)學(xué)分析的教學(xué)考試中試題的設(shè)置普遍以書(shū)本課題為主,又或者直接將某些例題設(shè)置成選擇或填空的答題方式,卻缺少開(kāi)放型的試題或全面考察學(xué)生是否掌握數(shù)學(xué)知識(shí)應(yīng)用解決實(shí)際問(wèn)題的試題。可能目前這種考試設(shè)題方式對(duì)老師的閱卷提供了便利,但是往往也造成部分學(xué)生在課本考試中分?jǐn)?shù)較高,但在解決實(shí)際具體問(wèn)題往往存在不足,對(duì)學(xué)生思維中形成了為考試而學(xué)習(xí),忽略了對(duì)數(shù)學(xué)概念的理解,導(dǎo)致具體問(wèn)題解決能力不足。對(duì)此,可利用數(shù)學(xué)建模思維去設(shè)置一部分開(kāi)放型試題,利于學(xué)生在解題過(guò)程中將所學(xué)的數(shù)學(xué)建模方式應(yīng)用與具體中,以此來(lái)觀察學(xué)生的數(shù)學(xué)素質(zhì)以及知識(shí)水平并適當(dāng)修改教學(xué)方案。又或者通過(guò)命題論文的方式來(lái)了解學(xué)生綜合水平,學(xué)生通過(guò)將自身所學(xué)知識(shí)進(jìn)行適當(dāng)?shù)目偨Y(jié),探討自身學(xué)習(xí)體會(huì),來(lái)加強(qiáng)學(xué)生對(duì)相關(guān)知識(shí)的進(jìn)一步理解,深化了數(shù)學(xué)建模思想的滲透。
6結(jié)語(yǔ)
論文關(guān)鍵詞:遺傳算法
1 引言
“物競(jìng)天擇,適者生存”是達(dá)爾文生物進(jìn)化論的基本原理,揭示了物種總是向著更適應(yīng)自然界的方向進(jìn)化的規(guī)律??梢?jiàn),生物進(jìn)化過(guò)程本質(zhì)上是一種優(yōu)化過(guò)程,在計(jì)算科學(xué)上具有直接的借鑒意義。在計(jì)算機(jī)技術(shù)迅猛發(fā)展的時(shí)代,生物進(jìn)化過(guò)程不僅可以在計(jì)算機(jī)上模擬實(shí)現(xiàn),而且還可以模擬進(jìn)化過(guò)程,創(chuàng)立新的優(yōu)化計(jì)算方法,并應(yīng)用到復(fù)雜工程領(lǐng)域之中,這就是遺傳算法等一類(lèi)進(jìn)化計(jì)算方法的思想源泉。
2 遺傳算法概述
遺傳算法是將生物學(xué)中的遺傳進(jìn)化原理和隨[1]優(yōu)化理論相結(jié)合的產(chǎn)物,是一種隨機(jī)性的全局優(yōu)算法。遺傳算法不但具有較強(qiáng)的全局搜索功能和求解問(wèn)題的能力,還具有簡(jiǎn)單通用、魯棒性強(qiáng)、適于并行處理等特點(diǎn)數(shù)學(xué)建模論文,是一種較好的全局優(yōu)化搜索算法。在遺傳算法的應(yīng)用中,由于編碼方式和遺傳算子的不同,構(gòu)成了各種不同的遺傳算法。但這些遺傳算法都有共同的特點(diǎn),即通過(guò)對(duì)生物遺傳和進(jìn)化過(guò)程中選擇、交叉、變異機(jī)理的模仿,來(lái)完成對(duì)問(wèn)題最優(yōu)解的自適應(yīng)搜索過(guò)程?;谶@個(gè)共同點(diǎn),Holland的遺傳算法常被稱(chēng)為簡(jiǎn)單遺傳算法(簡(jiǎn)記SGA),簡(jiǎn)單遺傳算法只使用選擇算子、交叉算子和變異算子這三種基本遺傳算子,其遺傳進(jìn)化操作過(guò)程簡(jiǎn)單,容易理解,是其他一些遺傳算法的雛形和基礎(chǔ),這種改進(jìn)的或變形的遺傳算法,都是以其為基礎(chǔ)[1]。
2.1遺傳算法幾個(gè)基本概念
個(gè)體(IndividualString):個(gè)體是遺傳算法中用來(lái)模擬生物染色體的一定數(shù)目的二進(jìn)制串,該二進(jìn)制串用來(lái)表示優(yōu)化問(wèn)題的滿(mǎn)意解。
種群(population):包含一組個(gè)體的群體,是問(wèn)題解的集合。
基因模式(Sehemata):基因模式是指二進(jìn)制位串表示的個(gè)體中,某一個(gè)或某些位置上具有相似性的個(gè)體組成的集合,也稱(chēng)模式。
適應(yīng)度(Fitness):適應(yīng)度是以數(shù)值方式來(lái)描述個(gè)體優(yōu)劣程度的指標(biāo),由評(píng)價(jià)函數(shù)F計(jì)算得到。F作為求解問(wèn)題的目標(biāo)函數(shù),求解的目標(biāo)就是該函數(shù)的最大值或最小值。
遺傳算子(genetic operator):產(chǎn)生新個(gè)體的操作,常用的遺傳算子有選擇、交叉和變異。
選擇(Reproduetion):選擇算子是指在上一代群體中按照某些指標(biāo)挑選出的,參與繁殖下一代群體的一定數(shù)量的個(gè)體的一種機(jī)制龍?jiān)雌诳?。個(gè)體在下一代種群中出現(xiàn)的可能性由個(gè)體的適應(yīng)度決定,適應(yīng)度越高的個(gè)體,產(chǎn)生后代的概率就越高。
交叉(erossover):交叉是指對(duì)選擇后的父代個(gè)體進(jìn)行基因模式的重組而產(chǎn)生后代個(gè)體的繁殖機(jī)制。在個(gè)體繁殖過(guò)程中,交叉能引起基因模式的重組,從而有可能產(chǎn)生含優(yōu)良性能的基因模式的個(gè)體。交叉可以發(fā)生在染色體的一段基因串或者多段基因串。交叉概率(Pc)決定兩個(gè)個(gè)體進(jìn)行交叉操作的可能性數(shù)學(xué)建模論文,交叉概率太小時(shí)難以向前搜索,太大則容易破壞高適應(yīng)度的個(gè)體結(jié)構(gòu),一般Pc取0.25~0.75
變異(Mutation):變異是指模擬生物在自然的遺傳環(huán)境中由于某種偶然因素引起的基因模式突變的個(gè)體繁殖方式。在變異算子中,常以一定的變異概率(Pm)在群體中選取個(gè)體,隨機(jī)選擇個(gè)體的二進(jìn)制串中的某些位進(jìn)行由概率控制的變換(0與1互換)從而產(chǎn)生新的個(gè)體[2]。如果變異概率太小,就難以產(chǎn)生新的基因結(jié)構(gòu),太大又會(huì)使遺傳算法成了單純的隨機(jī)搜索,一般取Pm=0.1~0.2。在遺傳算法中,變異算子增加了群體中基因模式的多樣性,從而增加了群體進(jìn)化過(guò)程中自然選擇的作用,避免早熟現(xiàn)象的出現(xiàn)。
2.2基本遺傳算法的算法描述
用P(t)代表第t代種群,下面給出基本遺傳算法的程序偽代碼描述:
基本操作:
InitPop()
操作結(jié)果:產(chǎn)生初始種群,初始化種群中的個(gè)體,包括生成個(gè)體的染色體值、計(jì)算適應(yīng)度、計(jì)算對(duì)象值。
Selection()
初始條件:種群已存在。
操作結(jié)果:對(duì)當(dāng)前種群進(jìn)行交叉操作。
Crossover()
初始條件:種群已存在。
操作結(jié)果:對(duì)當(dāng)前種群進(jìn)行交叉操作。
Mutation()
初始條件:種群已存在。
對(duì)當(dāng)前種群進(jìn)行變異操作。
PerformEvolution()
初始條件:種群已存在且當(dāng)前種群不是第一代種群。
操作結(jié)果:如果當(dāng)前種群的最優(yōu)個(gè)體優(yōu)于上一代的最優(yōu)本,則將其賦值給bestindi,否則不進(jìn)行任何操作。
Output()
初始條件:當(dāng)前種群是最后一代種群。
操作結(jié)果:輸出bestindi的表現(xiàn)型以及對(duì)象值。
3 遺傳算法的缺點(diǎn)及改進(jìn)
遺傳算法有兩個(gè)明顯的缺點(diǎn):一個(gè)原因是出現(xiàn)早熟往往是由于種群中出現(xiàn)了某些超級(jí)個(gè)體,隨著模擬生物演化過(guò)程的進(jìn)行,這些個(gè)體的基因物質(zhì)很快占據(jù)種群的統(tǒng)治地位,導(dǎo)致種群中由于缺乏新鮮的基因物質(zhì)而不能找到全局最優(yōu)值;另一個(gè)主要原因是由于遺傳算法中選擇及雜交變異等算子的作用,使得一些優(yōu)秀的基因片段過(guò)早丟失,從而限制了搜索范圍,使得搜索只能在局部范圍內(nèi)找到最優(yōu)值,而不能得到滿(mǎn)意的全局最優(yōu)值[3]。為提高遺傳算法的搜索效率并保證得到問(wèn)題的最優(yōu)解,從以下幾個(gè)方面對(duì)簡(jiǎn)單遺傳算法進(jìn)行改進(jìn)。
3.1編碼方案
因?qū)崝?shù)編碼方案比二進(jìn)制編碼策略具有精度高、搜索范圍大、表達(dá)自然直觀等優(yōu)點(diǎn)數(shù)學(xué)建模論文,并能夠克服二進(jìn)制編碼自身特點(diǎn)所帶來(lái)的不易求解高精度問(wèn)題、不便于反應(yīng)所求問(wèn)題的特定知識(shí)等缺陷,所以確定實(shí)數(shù)編碼方案替代SGA中采用二進(jìn)制編碼方案[4]。
3.2 適應(yīng)度函數(shù)
采用基于順序的適應(yīng)度函數(shù),基于順序的適應(yīng)度函數(shù)最大的優(yōu)點(diǎn)是個(gè)體被選擇的概率與目標(biāo)函數(shù)的具體值無(wú)關(guān),僅與順序有關(guān)[5]。構(gòu)造方法是先將種群中所有個(gè)體按目標(biāo)函數(shù)值的好壞進(jìn)行排序,設(shè)參數(shù)β∈(0,1),基于順序的適應(yīng)度函數(shù)為:
(1)
3.3 選擇交叉和變異
在遺傳算法中,交叉概率和變異概率的選取是影響算法行為和性能的關(guān)鍵所在,直接影響算法的收斂性。在SGA中,交叉概率和變異概率能夠隨適應(yīng)度自動(dòng)調(diào)整,在保持群體多樣性的同時(shí)保證了遺傳算法的收斂性。在自適應(yīng)基本遺傳算法中,pc和pm按如下公式進(jìn)行自動(dòng)調(diào)整:
(2)
(3)
式中:fmax為群體中最大的適應(yīng)度值;fave為每代群體的平均適應(yīng)度值;f′為待交叉的兩個(gè)個(gè)體中較大的適應(yīng)度值;f為待變異個(gè)體的適應(yīng)度值;此處,只要設(shè)定k1、k2、k3、k4為(0,1)之間的調(diào)整系數(shù),Pc及Pm即可進(jìn)行自適應(yīng)調(diào)整。本文對(duì)標(biāo)準(zhǔn)的遺傳算法進(jìn)行了改進(jìn),改進(jìn)后的遺傳算法對(duì)交叉概率采用與個(gè)體無(wú)關(guān),變異概率與個(gè)體有關(guān)。交叉算子主要作用是產(chǎn)生新個(gè)體,實(shí)現(xiàn)了算法的全局搜索能力。從種群整體進(jìn)化過(guò)程來(lái)看,交叉概率應(yīng)該是一個(gè)穩(wěn)定而逐漸變小,到最后趨于某一穩(wěn)定值的過(guò)程;而從產(chǎn)生新個(gè)體的角度來(lái)看,所有個(gè)體在交叉操作上應(yīng)該具有同等地位,即相同的概率,從而使GA在搜索空間具有各個(gè)方向的均勻性。對(duì)公式(2)和(3)進(jìn)行分析表明,適應(yīng)度與交叉率和變異率呈簡(jiǎn)單的線性映射關(guān)系。當(dāng)適應(yīng)度低于平均適應(yīng)度時(shí),說(shuō)明該個(gè)體是性能不好的個(gè)體數(shù)學(xué)建模論文,對(duì)它就采用較大的交叉率和變異率;如果適應(yīng)度高于平均適應(yīng)度,說(shuō)明該個(gè)體性能優(yōu)良,對(duì)它就根據(jù)其適應(yīng)度值取相應(yīng)的交叉率和變異率龍?jiān)雌诳?/p>
當(dāng)個(gè)體適應(yīng)度值越接近最大適應(yīng)度值時(shí),交叉概率和變異概率就越?。划?dāng)?shù)扔谧畲筮m應(yīng)度值時(shí),交叉概率和變異概率為零。這種調(diào)整方法對(duì)于群體處于進(jìn)化的后期比較合適,這是因?yàn)樵谶M(jìn)化后期,群體中每個(gè)個(gè)體基本上表現(xiàn)出較優(yōu)的性能,這時(shí)不宜對(duì)個(gè)體進(jìn)行較大的變化以免破壞了個(gè)體的優(yōu)良性能結(jié)構(gòu);但是這種基本遺傳算法對(duì)于演化的初期卻不利,使得進(jìn)化過(guò)程略顯緩慢[6]。因?yàn)樵谘莼跗?,群體中較優(yōu)的個(gè)體幾乎是處于一種不發(fā)生變化的狀態(tài),而此時(shí)的優(yōu)良個(gè)體卻不一定是全局最優(yōu)的,這很容易導(dǎo)致演化趨向局部最優(yōu)解。這容易使進(jìn)化走向局部最優(yōu)解的可能性增加。同時(shí),由于對(duì)每個(gè)個(gè)體都要分別計(jì)算Pc和Pm,會(huì)影響程序的執(zhí)行效率,不利于實(shí)現(xiàn)。
對(duì)自適應(yīng)遺傳算法進(jìn)行改進(jìn),使群體中具有最大適應(yīng)度值的個(gè)體的交叉概率和變異概率不為零,改進(jìn)后的交叉概率和變異概率的計(jì)算公式如式(4)和(5)所示。這樣,經(jīng)過(guò)改進(jìn)后就相應(yīng)地提高了群體中性能優(yōu)良個(gè)體的交叉概率和變異概率,使它們不會(huì)處于一種停滯不前的狀態(tài),從而使得算法能夠從局部最優(yōu)解中跳出來(lái)獲得全局最優(yōu)解[7]。
(4)
(5)
其中:fmax為群體中最大的適應(yīng)度值;fave為每代群體的平均適應(yīng)度值;f′為待交叉的兩個(gè)個(gè)體中較大的適應(yīng)度值;f為待變異個(gè)體的適應(yīng)度值;pc1為最大交叉概率;pm1為最大變異概率。
3.4 種群的進(jìn)化與進(jìn)化終止條件
將初始種群和產(chǎn)生的子代種群放在一起,形成新的種群,然后計(jì)算新的種群各個(gè)體的適應(yīng)度,將適應(yīng)度排在前面的m個(gè)個(gè)體保留,將適應(yīng)度排在后面m個(gè)個(gè)體淘汰數(shù)學(xué)建模論文,這樣種群便得到了進(jìn)化[8]。每進(jìn)化一次計(jì)算一下各個(gè)個(gè)體的目標(biāo)函數(shù)值,當(dāng)相鄰兩次進(jìn)化平均目標(biāo)函數(shù)之差小于等于某一給定精度ε時(shí),即滿(mǎn)足如下條件:
(6)
式中,為第t+1次進(jìn)化后種群的平均目標(biāo)函數(shù)值,為第t次進(jìn)化后種群的平均目標(biāo)函數(shù)值,此時(shí),可終止進(jìn)化。
3.5 重要參數(shù)的選擇
GA的參數(shù)主要有群里規(guī)模n,交叉、變異概率等。由于這些參數(shù)對(duì)GA性能影響很大,因此參數(shù)設(shè)置的研究受到重視。對(duì)于交叉、變異概率的選擇,傳統(tǒng)選擇方法是靜態(tài)人工設(shè)置?,F(xiàn)在有人提出動(dòng)態(tài)參數(shù)設(shè)置方法,以減少人工選擇參數(shù)的困難和盲目性。
4 結(jié)束語(yǔ)
遺傳算法作為當(dāng)前研究的熱點(diǎn),已經(jīng)取得了很大的進(jìn)展。由于遺傳算法的并行性和全局搜索等特點(diǎn),已在實(shí)際中廣泛應(yīng)用。本文針對(duì)傳統(tǒng)遺傳算法的早熟收斂、得到的結(jié)果可能為非全局最優(yōu)收斂解以及在進(jìn)化后期搜索效率較低等缺點(diǎn)進(jìn)行了改進(jìn),改進(jìn)后的遺傳算法在全局收斂性和收斂速度方面都有了很大的改善,得到了較好的優(yōu)化結(jié)果。
參考文獻(xiàn)
[1]邢文訓(xùn),謝金星.現(xiàn)代優(yōu)化計(jì)算方法[M].北京:清華大學(xué)出版社,1999:66-68.
[2]王小平,曹立明.遺傳算法理論[M].西安交通大學(xué)出版社,2002:1-50,76-79.
[3]李敏強(qiáng),寇紀(jì)淞,林丹,李書(shū)全.遺傳算法的基本理論與應(yīng)用[M].科學(xué)出版社, 2002:1-16.
[4]涂承媛,涂承宇.一種新的收斂于全局最優(yōu)解的遺傳算法[J].信息與控制,2001,30(2):116-138
[5]陳瑋,周激,流程進(jìn),陳莉.一種改進(jìn)的兩代競(jìng)爭(zhēng)遺傳算法[J].四川大學(xué)學(xué)報(bào):自然科學(xué)版,2003.040(002):273-277.
[6]王慧妮,彭其淵,張曉梅.基于種群相異度的改進(jìn)遺傳算法及應(yīng)用[J].計(jì)算機(jī)應(yīng)用,2006,26(3):668-669.
[7]金晶,蘇勇.一種改進(jìn)的自適應(yīng)遺傳算法[J].計(jì)算機(jī)工程與應(yīng)用,2005,41(18):64-69.
[8]陸濤,王翰虎,張志明.遺傳算法及改進(jìn)[J].計(jì)算機(jī)科學(xué),2007,34(8):94-96
探究式教學(xué)法,不同于傳統(tǒng)將知識(shí)直接由老師進(jìn)行傳授的教學(xué)方法,而將其重心放在學(xué)生的“探與究”上。“探”是重頭,學(xué)生在新接觸某個(gè)概念和原理時(shí),教師只提供事例和問(wèn)題,學(xué)生通過(guò)查閱、觀察、記錄、實(shí)驗(yàn)等途徑獨(dú)立探索?!熬俊笔呛诵?,學(xué)生在獨(dú)立探索的基礎(chǔ)上,通過(guò)思考、討論自行發(fā)現(xiàn)掌握相應(yīng)的原理和結(jié)論。最后老師結(jié)合學(xué)生的探究過(guò)程對(duì)他們的結(jié)論進(jìn)行評(píng)價(jià)和矯正。在探究過(guò)程中,始終強(qiáng)調(diào)以學(xué)生為主體,學(xué)生的自主學(xué)習(xí)能力都得到加強(qiáng),相比被動(dòng)接受教師傳授的知識(shí)和結(jié)論,通過(guò)這種方式獲取的知識(shí),學(xué)生理解更透徹,掌握更牢固。數(shù)學(xué)建模課程教學(xué)中大量源于實(shí)際生活的實(shí)例,也使得這門(mén)課程在教學(xué)手段和教學(xué)形式上的得以有大量創(chuàng)新,探究式的教學(xué)模式尤其適合在本課程的教學(xué)中使用,筆者長(zhǎng)期承擔(dān)數(shù)學(xué)建模課程的教學(xué)工作和指導(dǎo)學(xué)生開(kāi)展數(shù)學(xué)建模競(jìng)賽及有關(guān)活動(dòng),結(jié)合多年的實(shí)踐談一談。
探究過(guò)程的具體實(shí)施
問(wèn)題驅(qū)動(dòng) 探究過(guò)程的驅(qū)動(dòng)是問(wèn)題,學(xué)生的學(xué)習(xí)活動(dòng)圍繞教師設(shè)計(jì)的問(wèn)題展開(kāi)。教師在這里要做的是,課前根據(jù)教學(xué)目的和內(nèi)容,精心挑選有趣,又難度適宜的問(wèn)題。例如,在一堂數(shù)學(xué)建模課中,我們以身邊的一個(gè)具體實(shí)例來(lái)提出問(wèn)題:通常1公斤的面,1公斤的餡,包100個(gè)湯圓;今天1公斤面不變,餡比1公斤多了,問(wèn)應(yīng)多包幾個(gè),每個(gè)包小一點(diǎn),還是應(yīng)少包幾個(gè),每個(gè)包大一點(diǎn)?實(shí)踐探索 這是探究過(guò)程的關(guān)鍵環(huán)節(jié),在教師的組織下,學(xué)生自己動(dòng)手實(shí)踐如何制訂研究計(jì)劃,如何收集必要的資料和有關(guān)的研究方法。基于培養(yǎng)學(xué)生團(tuán)隊(duì)合作精神的目的,這個(gè)過(guò)程可將學(xué)生分組來(lái)完成。例如:包湯圓的問(wèn)題中,引導(dǎo)學(xué)生把問(wèn)題梳理和抽象出來(lái),一張面積為S的皮,可以包體積為V的餡,如今把這張面積為S的皮,分成n張面積為s的皮,每張面積為s的皮可以包體積為v的餡,那么問(wèn)題就轉(zhuǎn)化為了討論,究竟是V大還是nv大的問(wèn)題了。這個(gè)過(guò)程中,一定要讓學(xué)生思考,是不是需要某些合理的假設(shè),如:不論面皮大小,其厚度都應(yīng)該一致;不論湯圓大小,其形狀都一致(這兩個(gè)假設(shè)很關(guān)鍵)。思考討論 學(xué)生把通過(guò)實(shí)踐探索得到的資料進(jìn)行思考、梳理、總結(jié),形成自己的結(jié)論。各團(tuán)隊(duì)就同一問(wèn)題將自己的結(jié)論清楚地表達(dá)出來(lái),針對(duì)各種不同的觀點(diǎn),共同討論。評(píng)價(jià)矯正 在集體討論、辯論過(guò)程中,教師適時(shí)給予評(píng)價(jià)和矯正,分析獨(dú)特,立意清晰的給予肯定,觀點(diǎn)模糊的給予指正,通過(guò)融洽的學(xué)術(shù)交流使大家發(fā)現(xiàn)自己的問(wèn)題所在,不準(zhǔn)確、不深入的地方繼續(xù)完善。
探究式教學(xué)中應(yīng)注意的問(wèn)題
MATLAB應(yīng)用軟件是一種準(zhǔn)確、較為可靠的科學(xué)計(jì)算標(biāo)準(zhǔn)軟件,操作方便,方法簡(jiǎn)單易行,學(xué)生學(xué)習(xí)起來(lái)也較容易入手,是一種培養(yǎng)學(xué)生動(dòng)手能力的數(shù)學(xué)學(xué)習(xí)方式,MATLAB軟件適宜于數(shù)學(xué)實(shí)驗(yàn)的學(xué)習(xí)內(nèi)容,MATLAB數(shù)學(xué)實(shí)驗(yàn)課程的學(xué)習(xí),對(duì)于幫助學(xué)生提高動(dòng)手實(shí)踐能力、臨場(chǎng)應(yīng)變能力都有很好的幫助,并且對(duì)于學(xué)生使用先進(jìn)的方法獨(dú)立解決問(wèn)題,進(jìn)行獨(dú)立思考能力的培養(yǎng)都有好處。同時(shí)培養(yǎng)學(xué)生的實(shí)踐創(chuàng)新能力和動(dòng)手能力,對(duì)于回答學(xué)生對(duì)于數(shù)學(xué)的應(yīng)用領(lǐng)域的認(rèn)識(shí),并能夠培養(yǎng)學(xué)生的應(yīng)用意識(shí),用以前所學(xué)的數(shù)學(xué)理論和計(jì)算機(jī)知識(shí)去發(fā)現(xiàn)問(wèn)題和解決實(shí)際問(wèn)題的能力。
二、應(yīng)用數(shù)學(xué)建模思想解決實(shí)際問(wèn)題
下面就數(shù)學(xué)建模中的一個(gè)常見(jiàn)實(shí)例問(wèn)題,應(yīng)用數(shù)學(xué)建模的思想,給出解決實(shí)際問(wèn)題的思路和方法,以及數(shù)學(xué)建模的過(guò)程和步驟。把椅子放在一個(gè)不平整的地面上,一般情況只有三只腳著地,另一只腳或高或低,放不平穩(wěn),然而只需要稍微調(diào)整座椅的位置幾次,并進(jìn)行輕輕挪動(dòng),就可以使座椅的四只腳同時(shí)和地面接觸,座椅放穩(wěn)了。此問(wèn)題在日常生活中很常見(jiàn),同時(shí)在數(shù)學(xué)建模的時(shí)候,可以進(jìn)行下面的假設(shè):對(duì)于數(shù)學(xué)建模而言,一般都需要進(jìn)行模型假設(shè),因?yàn)閷?shí)際生活中的例子,只有在特定假設(shè)的前提下,才能夠劃歸為數(shù)學(xué)問(wèn)題,進(jìn)行求解。對(duì)椅子、地面和椅子的四只椅腳可以結(jié)合實(shí)際的進(jìn)行必要的假設(shè):
1.椅子本身而言,四條腿是一樣長(zhǎng),椅腳與地面的接觸處可看做一個(gè)點(diǎn),四只腳與地面的接觸所形成的四個(gè)點(diǎn)之間的連線構(gòu)成一個(gè)正方形。
2.地面的高度的變換是連續(xù)不斷的,沿任何方向延伸都不會(huì)出現(xiàn)間斷(沒(méi)有像階梯那樣的巨變情況),即地面可視為高等數(shù)學(xué)上的連續(xù)曲面。
3.其中假設(shè)椅子是放在一個(gè)硬的地面上的,不會(huì)放在海綿,或者是很厚的地毯上的。(接觸點(diǎn)是只要接觸就不能下壓)
4.對(duì)于四個(gè)椅腳的間距和椅腿的長(zhǎng)度而言,地面是相對(duì)平坦的,地面的坡度的高度相對(duì)于椅腳的間距和椅腿的長(zhǎng)度是很小的,使椅子在任何位置至少有三只腳能夠同時(shí)著地。現(xiàn)在對(duì)以上的假設(shè)情況進(jìn)行分析,其中,假設(shè)1顯然是合乎情理的,因?yàn)閷?shí)際中,椅子的四條腿基本上都是一樣長(zhǎng)的,即使不一樣長(zhǎng),其差距也是很小的,在這里是可以忽略不計(jì)的。假設(shè)2相當(dāng)于給出了該建模的一個(gè)基本條件,給出了椅子能夠放穩(wěn)的條件,存在放穩(wěn)的這種可能性。因?yàn)榧僭O(shè)地面高度不連續(xù),而是在有臺(tái)階的地方,是無(wú)法使椅子的四只腳同時(shí)著地的。對(duì)于假設(shè)3,是一個(gè)基于實(shí)際情況的假設(shè),是一種特殊情況,在這里我們排除這種情況的假設(shè)。假設(shè)4也是要排除這樣的情況發(fā)生:椅腳間距和椅腿的長(zhǎng)度與地面上的高度的連續(xù)變化的尺寸在一致的范圍內(nèi),不會(huì)有地面的高度比椅腿的長(zhǎng)度大很多的情況,出現(xiàn)深溝或凸峰(即使是連續(xù)變化的),比如地面有凸峰,致使椅子的三只腳無(wú)法同時(shí)著地。在此假設(shè)的基礎(chǔ)之上,該模型的問(wèn)題也已經(jīng)出來(lái)了,就是能夠讓椅子的四只腳同時(shí)和地面接觸,把滿(mǎn)足這種情況的條件和結(jié)論表述出來(lái),并且構(gòu)建一個(gè)能夠利用數(shù)學(xué)知識(shí)解決的模型。首先需要用一個(gè)量來(lái)表示椅子的位置,并且這個(gè)位置是不確定的,而且隨著挪動(dòng)椅子的位置,這個(gè)量也應(yīng)該隨著變化,所以使用一個(gè)變量來(lái)進(jìn)行表示。注意在前面的假設(shè)中,已經(jīng)做了這樣的假設(shè),椅腳連線構(gòu)成一個(gè)正方形,那么根據(jù)正方形,能夠想到其以中心為對(duì)稱(chēng)點(diǎn),正方形的四個(gè)頂點(diǎn)繞中心點(diǎn)的旋轉(zhuǎn)恰好可以代表椅子位置的改變,于是我們可以使用旋轉(zhuǎn)的角度這一個(gè)變量來(lái)表示椅子當(dāng)前所在的位置。四個(gè)椅腳分別對(duì)應(yīng)ABCD四點(diǎn),四個(gè)點(diǎn)的連線就構(gòu)成了正方形ABCD,正方形的對(duì)角線AC與x軸重合,AC的中點(diǎn)和O點(diǎn)重合,椅子繞中心點(diǎn)O旋轉(zhuǎn)角度φ后,正方形ABCD轉(zhuǎn)至任意一個(gè)位置,假設(shè)為轉(zhuǎn)到A’B’C’D’的位置,所以對(duì)角線AC與x軸的夾角φ代表了椅子的位置。其次把椅腳著地用數(shù)學(xué)符號(hào)進(jìn)行表示。如果用某個(gè)變量表示椅腳與地面的垂直距離,那么當(dāng)這個(gè)距離為零時(shí)就是表示椅腳和地面接觸了,椅腳著地了。椅子在不同位置時(shí),椅腳與地面的距離不同,并且這個(gè)距離和旋轉(zhuǎn)的角度有一定的關(guān)系,它是旋轉(zhuǎn)角度的一個(gè)變量,因此在數(shù)學(xué)上這個(gè)距離就是椅子位置變量φ的一個(gè)函數(shù),這樣就可以把一個(gè)實(shí)際問(wèn)題數(shù)學(xué)化。雖然椅子有四只腳,與之對(duì)應(yīng)的就應(yīng)該有四個(gè)距離,但是由于正方形的中心對(duì)稱(chēng)性,在這里,只要假設(shè)兩個(gè)距離函數(shù)就可以了,分別是對(duì)稱(chēng)的兩個(gè)腳與地面的距離之和,記A,C兩腳與地面距離之和為u(φ),B,D兩腳與地面距離之和為v(φ),根據(jù)實(shí)際情況可以得到兩個(gè)函數(shù)的條件,(u(φ),v(φ)≥0)。由假設(shè)2可知,u和v都是連續(xù)變化的函數(shù)。由假設(shè)4,在任意時(shí)刻,任何位置椅子都有三只腳著地,只需調(diào)節(jié)另外一只椅腳。所以對(duì)于任意的φ,u(φ)和v(φ)中至少有一個(gè)為零。當(dāng)φ=0時(shí),假設(shè)v(φ)=0,u(φ)>0。這樣,改變椅子的位置使四只腳同時(shí)著地的這個(gè)實(shí)際模型的問(wèn)題,就歸結(jié)為證明如下的一個(gè)數(shù)學(xué)命題:已知u(φ)和v(φ)是φ的連續(xù)函數(shù),對(duì)任意φ,u(φ)·v(φ)=0,且v(0)=0,u(0)>0,證明存在φ0,使u(φ0)=v(φ0)=0。在上面講實(shí)際問(wèn)題的條件和需要解答的問(wèn)題都構(gòu)成數(shù)學(xué)問(wèn)題,以下就是利用數(shù)學(xué)知識(shí)對(duì)建模模型的實(shí)例進(jìn)行解答。對(duì)于該例子中的題目,有很多種解答方法,下面這種方法運(yùn)用數(shù)學(xué)上的連續(xù)性的理論。將椅子向左或向右旋轉(zhuǎn)90°(π/2),并且將對(duì)角線AC與BD互換。由v(0)=0和u(0)>0可知,v(π/2)>0和u(π/2)=0。令h(φ)=u(φ)-v(φ),則h(φ)和h(π/2)<0。由u和v的連續(xù)性,可以知道h也是連續(xù)函數(shù)。根據(jù)高等數(shù)學(xué)中關(guān)于連續(xù)函數(shù)的基本性質(zhì),必存在φ0(0<φ0<π/2)使h(φ0)=0,即u(φ0)=v(φ0)。最后,因?yàn)閡(φ0)·v(φ0)=0,所以u(píng)(φ0)=v(φ0)=0。通過(guò)運(yùn)用數(shù)學(xué)建模知識(shí),解決了實(shí)際的問(wèn)題,同時(shí)學(xué)生也學(xué)會(huì)了連續(xù)函數(shù)中的相關(guān)知識(shí),而在實(shí)際的應(yīng)用中,還可以運(yùn)用MATLAB等軟件,對(duì)數(shù)學(xué)模型進(jìn)行解答和計(jì)算,提高學(xué)生的解題能力和軟件的使用能力。
三、結(jié)論
建模思想在數(shù)學(xué)課堂上的應(yīng)用,其核心是建立數(shù)學(xué)思維模式,發(fā)展學(xué)生的數(shù)學(xué)思想,使學(xué)生能夠靈活的運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)用“數(shù)學(xué)的腦子”思考問(wèn)題、學(xué)會(huì)利用數(shù)學(xué)的方法解決問(wèn)題.例如,有6名工人向工地運(yùn)磚,每人一輛手推車(chē),大車(chē)每次運(yùn)600塊,小車(chē)每次運(yùn)400塊,5次共運(yùn)了28000塊,問(wèn)有多少輛大車(chē)參與了運(yùn)磚?首先,要認(rèn)真審題、仔細(xì)讀題,把握題目給出的每個(gè)條件和提示,將其中隱藏的等量關(guān)系準(zhǔn)確的找出來(lái).如例題,關(guān)鍵掌握兩個(gè)等量關(guān)系,大車(chē)和小車(chē)一共6輛,因?yàn)橛辛鶄€(gè)工人使用,每人一輛手推車(chē);所有大車(chē)和小車(chē)5次共運(yùn)磚28000塊,通過(guò)總量和次數(shù)和求出每次運(yùn)磚5600塊.其次,進(jìn)行設(shè)元,通過(guò)對(duì)未知和已知的掌握準(zhǔn)確設(shè)定未知數(shù),列出不等式后,注意未知量之間的轉(zhuǎn)換技巧.如例題,求多少輛大車(chē)參與了運(yùn)磚,如未知數(shù)設(shè)為:有x輛小車(chē)參與運(yùn)輸,或有x輛大車(chē)和y輛小車(chē)參與運(yùn)輸,這樣設(shè)元解題就麻煩.直接設(shè)未知數(shù)為:有x輛大車(chē)參與了運(yùn)輸,簡(jiǎn)潔、明了,在尋找大車(chē)數(shù)量與小車(chē)數(shù)量的關(guān)系可得出小車(chē)數(shù)量為:6-x,這樣就成功的完成了未知量之間的轉(zhuǎn)換.最后列方程求解,得出答案.對(duì)于該類(lèi)型題要善于總結(jié),分析同類(lèi)型題的共同點(diǎn),以便建立數(shù)學(xué)模式.先從情景入手,A和B共同做一件事,A、B量的和為C,單位工作量分別為D、E,工作總量為F,此類(lèi)題求解的模式為,先設(shè)A、B中的一個(gè)為x,另一個(gè)就為C-x.然后建立等量關(guān)系進(jìn)行列式求解,F(xiàn)=Dx+E(C-x),這樣簡(jiǎn)化了求解過(guò)程,節(jié)省了分析問(wèn)題的時(shí)間,更容易使學(xué)生輕松的解決問(wèn)題.今后,當(dāng)遇到類(lèi)似的題目會(huì)產(chǎn)生主動(dòng)比較的意識(shí),發(fā)現(xiàn)題目的相同與不同,有利于學(xué)生數(shù)學(xué)綜合能力的提高.
二、引導(dǎo)學(xué)生針對(duì)實(shí)際問(wèn)題建立數(shù)學(xué)模型
數(shù)學(xué)學(xué)習(xí)的最終目的是應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際中的問(wèn)題,在教學(xué)中,要注重引導(dǎo)學(xué)生利用學(xué)過(guò)的數(shù)學(xué)知識(shí)建立數(shù)學(xué)模型解決實(shí)際中的問(wèn)題,其中的關(guān)鍵是將實(shí)際的數(shù)學(xué)問(wèn)題轉(zhuǎn)化為相關(guān)的數(shù)學(xué)知識(shí),使抽象的數(shù)學(xué)問(wèn)題具體化、簡(jiǎn)單化.例如,某圖書(shū)館需要一批書(shū)架,到市場(chǎng)購(gòu)買(mǎi)是890元一件,圖書(shū)館自制是590元一件,但需要制作場(chǎng)地和制作設(shè)備,得知制作場(chǎng)地及設(shè)備的租賃費(fèi)為5100元,問(wèn)怎樣獲得這批書(shū)架圖書(shū)館最合算?對(duì)于實(shí)際問(wèn)題的解決,首先,將實(shí)際數(shù)學(xué)情景與數(shù)學(xué)知識(shí)聯(lián)系起來(lái)進(jìn)行分析,正確設(shè)元.如例題,設(shè)圖書(shū)館需要書(shū)架x件,即得出:商場(chǎng)購(gòu)買(mǎi)書(shū)架需要的支付金額為890x,制作書(shū)架需支付的金額為(590x+5100)元.然后對(duì)其進(jìn)行分析,當(dāng)890x=590x+5100時(shí),圖書(shū)館用于購(gòu)買(mǎi)書(shū)架和定制書(shū)架的支出相同,通過(guò)求解x=17(件).結(jié)合題意分析:當(dāng)x=17時(shí),兩種方案的結(jié)果相同;當(dāng)x>17時(shí),購(gòu)買(mǎi)支出的費(fèi)用較高,就應(yīng)考慮選擇制作書(shū)架;當(dāng)x<17時(shí),購(gòu)買(mǎi)支出的費(fèi)用較低,那么選擇購(gòu)買(mǎi)就劃算一些.在數(shù)學(xué)知識(shí)理論的支持下,圖書(shū)館所需的書(shū)架數(shù)量即使任意發(fā)生變化,我們也能得到最佳的定制方案,以確保書(shū)架購(gòu)置成本的最低化.
三、巧建數(shù)形模式解決數(shù)學(xué)問(wèn)題
數(shù)形結(jié)合模式在數(shù)學(xué)解題中非常關(guān)鍵,數(shù)形的結(jié)合往往能使一些困難問(wèn)題簡(jiǎn)單化、復(fù)雜問(wèn)題直觀化.在數(shù)學(xué)教學(xué)中,要善于引導(dǎo)學(xué)生將抽象的代數(shù)問(wèn)題與直觀的幾何圖形結(jié)合起來(lái)進(jìn)行求解.例如,20個(gè)同學(xué)去郊游,打算在湖中蕩舟,每艘小船可坐4人,租金是40元,每艘大船可坐6人,價(jià)錢(qián)是50元,同學(xué)們?cè)鯓幼獯瑒澦悖畬?duì)于該問(wèn)題憑想象解決往往是不可靠的,有的同學(xué)認(rèn)為,租2艘大船2艘小船,剛好坐滿(mǎn),不浪費(fèi)是最劃算的.有的同學(xué)認(rèn)為租小船劃算、便宜,到底怎樣最合算,不是我們能夠討論出結(jié)果的,而應(yīng)該用“數(shù)學(xué)的腦子”去思考問(wèn)題.設(shè)租大船x艘,租小船y艘,求解:50x+40y的最小值.結(jié)合6x+4y≥20求解.首先分析得出3x+2y≥10(x,y都為整數(shù))結(jié)合3x+2y=10的圖形。
結(jié)合圖形很容易得出y的值為0~5,x的值為0~4,直線和直線以上部分都符合題目要求,可以滿(mǎn)足同學(xué)們的租船需求,但y超過(guò)5、x超過(guò)4后就會(huì)造成資源浪費(fèi),所以不考慮.再?gòu)念}目得出50x+40y值最小時(shí),租船最合算,即20Z-10x(Z=3x+2y)取最小值,分析得:Z值最小,x值最大時(shí),20Z-10x的取值最小,即3x+2y=10x取最大值時(shí),租船最合算,結(jié)合圖形x=3,y=1.利用圖形解決數(shù)學(xué)問(wèn)題,使復(fù)雜的數(shù)學(xué)問(wèn)題得到了簡(jiǎn)化,并使抽象的數(shù)學(xué)條件直觀化,有利于對(duì)學(xué)生數(shù)學(xué)興趣的培養(yǎng)和數(shù)學(xué)解題能力的提高.又如,通過(guò)代數(shù)形式解決幾何問(wèn)題,使一些較復(fù)雜的幾何問(wèn)題求解簡(jiǎn)單化,使抽象的幾何問(wèn)題直觀化.例如,已知拋物線y=x2與直線y=4x+5相交,求他們圍成的圖形的面積.打眼一看這題讓人發(fā)蒙,如果在求解時(shí)先畫(huà)出草圖(如圖2),再進(jìn)行求解,題目的已知和未知就變得比較明朗化,有助于解題思路的拓展.結(jié)合草圖對(duì)題目進(jìn)行分析,先利用x2=4x+5求兩個(gè)解析式的兩個(gè)交點(diǎn),很直觀的可以看到y(tǒng)=x2與直線y=4x+5圍成的圖形,再以x或y為積分變量進(jìn)行求解.建立此類(lèi)型題的求解模式,使學(xué)生科學(xué)的掌握不同類(lèi)型題目的求解途徑,對(duì)于提高數(shù)學(xué)教學(xué)質(zhì)量非常關(guān)鍵.
數(shù)學(xué)分析論文 數(shù)學(xué)家論文 數(shù)學(xué) 數(shù)學(xué)建模 數(shù)學(xué)初一論文 數(shù)學(xué)物理論文 數(shù)學(xué)簡(jiǎn)史論文 數(shù)學(xué)思維論文 數(shù)學(xué)初二論文 數(shù)學(xué)創(chuàng)新教學(xué) 紀(jì)律教育問(wèn)題 新時(shí)代教育價(jià)值觀