在线观看av毛片亚洲_伊人久久大香线蕉成人综合网_一级片黄色视频播放_日韩免费86av网址_亚洲av理论在线电影网_一区二区国产免费高清在线观看视频_亚洲国产精品久久99人人更爽_精品少妇人妻久久免费

首頁 > 文章中心 > 正文

分片實驗管理

前言:本站為你精心整理了分片實驗管理范文,希望能為你的創(chuàng)作提供參考價值,我們的客服老師可以幫助你提供個性化的參考范文,歡迎咨詢。

分片實驗管理

摘要:本文提出分片試驗在有限元法中有著重要的作用,它是近代有限元發(fā)展的一個主要特色。得出分片試驗對位移函數(shù)和應(yīng)變函數(shù)的要求,這些要求便是一個好的有限元法所應(yīng)保證的;分析了幾何方程弱形式與分片試驗的關(guān)系,借此分析了雜交元、擬協(xié)調(diào)元如何滿足這些要求,以及在滿足這些要求的同時產(chǎn)生的對其他條件的影響;分析了精化直接剛度法、廣義協(xié)調(diào)元和雙參數(shù)法如何保證分片試驗的滿足;最后作為位移條件的應(yīng)用例子,改進了bciz元。

關(guān)鍵詞:分片試驗,弱形式,網(wǎng)線函數(shù),有限元法

1引言

連續(xù)問題極大地推動了有限元的發(fā)展,目前,成熟的構(gòu)造單元的方法有傳統(tǒng)的位移法有限元[1]、應(yīng)力雜交元[4]、雜交混合元[5]、擬協(xié)調(diào)元[2][3]、廣義協(xié)調(diào)元[6]、雙參數(shù)法[7]、精化直接剛度法[8]等多種。有些方法在數(shù)學上已有證明,但這些方法的更為完善的證明仍是一個課題,而且其數(shù)學證明還很難被研究力學的人們所理解。人們?nèi)员容^普遍以事后的分片試驗來驗證單元的收斂性。盡管當前仍有對分片試驗的討論,但以往的大量實踐說明:通過分片試驗的單元使用起來是令人放心的。通過分片試驗是絕大多數(shù)有限元分析方法的共同點,近期有限元的發(fā)展可以說是以分片試驗為一個主要內(nèi)涵的發(fā)展。

眾所周知,分片試驗是與單元間的位移協(xié)調(diào)性密切相關(guān)的。人們在進行有限元分析時,不可避免的涉及了單元間的協(xié)調(diào)關(guān)系,這種協(xié)調(diào)關(guān)系與兩個單元有關(guān),文[4][5]采用了單元邊界上的公共的位移插值函數(shù),文[9]把這種位移插值函數(shù)成為“網(wǎng)線函數(shù)”。正式這種所謂的“網(wǎng)線函數(shù)”的采用,單元間的協(xié)調(diào)問題可以在單元內(nèi)獨立考慮。目前成功解決連續(xù)問題的有限元法均有意或無意地使用了這種網(wǎng)線函數(shù)。本文通過網(wǎng)線函數(shù)給出了分片試驗對應(yīng)變和位移的要求。

目前對各種有限元法分析的方法均是在單元一級上采用變分原理,從而得到單元的應(yīng)變(或應(yīng)力)的,由結(jié)點位移為參數(shù)表達的表達式,再把它們代入最小勢能原理得到剛度陣。各種有限元法在得到應(yīng)變(或應(yīng)力)的做法上不同,好的有限元法得到的應(yīng)變表達式已滿足了通過分片實驗所應(yīng)滿足的條件。

2分片檢驗的要求

因有限元法最終列出的是勢能的方程,因此分片試驗可以看作:在常應(yīng)變情況下,位移的不協(xié)調(diào)部分對勢能無貢獻,在薄板彎曲問題中,可如下表達:

(1)

其中,a:單元域,為位移的不協(xié)調(diào)部分,有:

(2)

為位移,為位移的協(xié)調(diào)部分。

方程(1)可以理解為:在常內(nèi)力情況下,不協(xié)調(diào)位移對應(yīng)變能無貢獻。把(2)式代入方程(1)

(3)

對(3)式中的項應(yīng)用格林公式,并應(yīng)用坐標變換公式:

(4)

其中、分別為位移協(xié)調(diào)部分在單元邊界的法向和切向的導(dǎo)數(shù),即為文中的網(wǎng)線函數(shù),、為單元邊界外法線的方向余弦。對含的項再分步積分得:

(>r時)(5)

r表示單元的邊數(shù),表示結(jié)點的位移參數(shù)。對(3)中的含項也進行分步積分并整理有:

(6)

同樣,對項再分步積分得:

(7)

ai、bi、ci為由各邊的nx與ny組成的參數(shù),表示位移函數(shù)在結(jié)點處的值。

(4)、(5)、(6)、(7)便是通過分片檢驗所需滿足的方程。

(4)、(5)是從應(yīng)變的角度反映了分片試驗對單元的要求,這里稱之為應(yīng)變約束條件;(6)、(7)是從位移的角度反映了分片試驗對單元的要求,這里稱之為位移約束條件。成熟的有限元法都自覺或不自覺地應(yīng)用了這些條件。

傳統(tǒng)的位移法構(gòu)造的協(xié)調(diào)元自動滿足了上述各式,下面對其它有限元分析方法進行分類分析。

3使用應(yīng)變約束的有限元法

方程(4)、(5)是對應(yīng)變的要求,沒有涉及剛體位移,同時應(yīng)力和應(yīng)變之間只有一個線性關(guān)系,所以,假設(shè)應(yīng)變或應(yīng)力的有限元法都應(yīng)滿足這兩個方程。

方程(4)、(5)表達的是應(yīng)變與位移之間的關(guān)系,它們必然與彈性力學的幾何方程:

(8)

有著密切的關(guān)系。把幾何方程(3.1)寫成弱形式:

(9)

、、為權(quán)函數(shù),應(yīng)用兩次格林公式變換上述方程:

(10)

在上式中,單元邊界上的、、分別以它們對應(yīng)的網(wǎng)線函數(shù)、、代替:

(11)

如果方程(11)中、、是應(yīng)力的變分,即滿足了齊次的平衡方程:

(12)

則方程(12)變?yōu)椋?/p>

(13)

此即為薄板彎曲問題在單元上的最小余能原理的變分方程。

方程(11)與(13)便是連續(xù)性方程弱形式中的兩個典型形式。在方程(11)與(13)中當、、分別取常數(shù),另兩個為零時,便可得到方程(4)或(5),即符合分片試驗的要求。

擬協(xié)調(diào)元與雜交混合元便是采用方程(11)對應(yīng)變或應(yīng)力進行離散,而應(yīng)力雜交元采用的是(13)式。不同的是應(yīng)力雜交元與雜交混合元是由假設(shè)應(yīng)力出發(fā),而擬協(xié)調(diào)元是由假設(shè)應(yīng)變?nèi)胧帧6鴳?yīng)力與應(yīng)變之間的關(guān)系只是一個線性變換,如果應(yīng)力與應(yīng)變設(shè)在同一空間,僅是設(shè)應(yīng)力與設(shè)應(yīng)變的不同是不會影響最終結(jié)果的。

從方程(11)與(13)的來源(9)式可以看出,幾類單元中的應(yīng)變(或應(yīng)力)只在較弱的意義上滿足相容方程。因平衡方程與連續(xù)性方程是一對對偶的微分方程組,有限元法中已經(jīng)使用了平衡方程的弱形式—最小勢能原理,這里使用了連續(xù)性方程的弱形式也許更為合理??梢则炞C,單元應(yīng)變滿足相容條件的強形式與弱形式對單元的精度一般影響不大。

由以上討論可見,在有限元分析中選常數(shù)作檢驗函數(shù)是保證單元通過分片檢驗的關(guān)鍵。而這一點在以上提到的三種有限元法中都能自然得到滿足。構(gòu)造三角形單元時,常取面積坐標作為檢驗函數(shù)基,因三個面積坐標之和為1,固在離散每個應(yīng)變時,檢驗函數(shù)應(yīng)取遍三個面積坐標,這樣便保證了檢驗函數(shù)為常數(shù)時式(5)或(6)成立。

精化直接剛度法雖然從設(shè)位移出發(fā),但又對應(yīng)變矩陣進行了修正。以下討論其應(yīng)變的改進作用。

在方程(4)的兩邊同時除以單元的面積,變?yōu)椋?/p>

(14)

上式表達了單元的平均應(yīng)變所應(yīng)滿足的方程??砂焉鲜綄懗扇缦戮仃囆问剑?/p>

(15)

其中與文[7]中相一致,為結(jié)點參數(shù)矢量。一般的有限元法得到的應(yīng)變表達式:

(16)

其單元的平均應(yīng)變:

(17)

不一定滿足式(14),因此把平均應(yīng)變進行修正,即換成式(18)中表達的所需形式,修正后的應(yīng)變陣為:

(18)

這樣便保證了單元能夠通過分片檢驗。此外,得到時還可使用(6)式,從而得到與式(14)不盡相同的形式。

因此,可以說精化直接剛度法是通過修正單元的平均應(yīng)變,使其通過分片試驗的有限元分析方法。精化直接剛度法實施起來是巧妙而方便的。

4使用位移約束的有限元法

使用位移約束方程的方式有兩種:第一種是位移的廣義參數(shù)的個數(shù)不增加,改變以往的采用結(jié)點參數(shù)確定各廣義參數(shù)的方法,廣義協(xié)調(diào)元和雙參數(shù)法便是采用這種方法;第二種方法是采用增加位移中的廣義參數(shù)的做法。此外兩種做法也可混合使用。

4.1廣義協(xié)調(diào)元和雙參數(shù)法

方程(6)、(7)反映了分片檢驗對位移函數(shù)的要求,與其相應(yīng)的有限元法是廣義協(xié)調(diào)元和雙參數(shù)法。從(6)、(7)可以看出,若使單元通過分片檢驗,則應(yīng)包含條件:

或(i=1,…,r)(19)

廣義協(xié)調(diào)元與雙參數(shù)法在確定位移廣義參數(shù)的時候包含上述方程。這兩種有限元法得到的位移插值函數(shù)在結(jié)點處的表達不一定精確,有時會有一個高階小量的誤差。而邊界位移條件是直接由結(jié)點位移表示的,因此在做分片檢驗時會有一定的誤差,即不很準確地通過分片檢驗。這一點可由文[8]中的算例看出。

對于某些特殊形狀的單元來說,方程(19)只是方程(6)和(7)的充分條件,非必要條件,這一點可以從十二參矩形單元中看出。眾所周知,矩形薄板單元不滿足連續(xù),可以驗證它同樣不滿足(19)式。但這種單元能通過分片試驗而且計算精度較高,其原因是它滿足方程(6)和(7)。

4.2增加位移中的廣義參數(shù)

可以增加位移函數(shù)中的廣義參數(shù),通過分片試驗的條件消去這些多余的廣義參數(shù),這樣得到的位移插值函數(shù)會得到改善或完全滿足分片試驗的要求。這種方法的實質(zhì)是改善了位移函數(shù)的空間,但它的應(yīng)用還非常少,其主要原因是計算中涉及求逆運算。目前計算機技術(shù)及軟件的高速發(fā)展,尤其是代數(shù)運算軟件的出現(xiàn),這種做法也許會有一些生命力。下面舉一個通過這種方法改善單元性能的例子。

在構(gòu)造三角形單元時,人們呈為完全的三次式中十個基函數(shù)的取舍大費周折,面積坐標的應(yīng)用解決了對稱性的問題,但zienkiewicz元(bciz元)的性能不佳也是人所共知的。今位移函數(shù)的基取完全的三次式,含十個基函數(shù),采用面積坐標可寫成如下形式:

(20)

其中為zienkiewicz元的單元位移函數(shù),(i=1,2,3)為三個面積坐標,c為待定參數(shù)。以下通過c的確定來改善單元的性質(zhì)。因只有一個待定參數(shù),方程(6)不可能完全得到滿足,考慮到對稱性將(6)中的前兩式相加得到方程:

(21)

應(yīng)用方程(21)可以確定出參數(shù)c,其中由采用結(jié)點參數(shù)建立的單元邊界法線方向轉(zhuǎn)角的線性插值函數(shù)來表達。定出c后便可用常規(guī)方法得到單元剛度陣。

對邊長為0.5的方板做圖示兩種網(wǎng)格劃分,坐標原點在1點,其中圖二中5點坐標為(0.2,0.15),邊界結(jié)點的位移參數(shù)按任意的二次撓度場給定,計算5點的撓度及轉(zhuǎn)角,表1列出了zienkiewicz元和改進的zienkiewicz元結(jié)果。

可以看出改進zienkiewicz元的性能有很大的改善,以下做一算例。

算例:方板中心受集中力,根據(jù)對稱性,取板的四分之一,采用交叉網(wǎng)格的計算結(jié)果如表2。

表2bciz元改進前后板中心撓度計算

單元網(wǎng)格

2×2

4×4

8×8

16×16

32×32

精確值

四邊

簡支

改進前

0.01231

0.01205

0.01199

0.01198

0.01198

0.01160

改進后

0.012566

0.01190

0.01170

0.01163

0.01161

四邊

固支

改進前

0.005837

0.005825

0.005799

0.005792

0.005791

0.005612

改進后

0.006397

0.005873

0.005699

0.005639

0.005620

由算例可以看出改進zienkiewicz元的收斂性能有了很大的改善,而且單元采用的位移函數(shù)不僅具有幾何對稱性,各結(jié)點的撓度和轉(zhuǎn)角值也表達精確。在三次位移函數(shù)的單元中,這種單元的位移函數(shù)的插值空間得到了進一步改進。

5總結(jié)

通過前面的討論可以看出,各有限元法與分片試驗是密不可分的,它們自覺或不自覺得滿足了分片試驗的要求。這些有限元法合理的共同原因也許在于它們能通過分片試驗。

滿足了應(yīng)變約束條件的有限元法,一般是以損失連續(xù)性方程的嚴格性為代價的,這一點對計算結(jié)果一般影響不大,而且往往會改善計算精度,這些有限元法對分片試驗的滿足十分自然,但有些時候會涉及秩的問題;

使用了位移約束條件的有限元法,以損失位移函數(shù)在單元結(jié)點的準確程度為代價,換取了單元總體性能的改進,或者改善了位移試函數(shù)的插值空間,這類有限元法對在保持位移函數(shù)的幾何對稱性上有些困難。以上兩類有限元法都得出了很多屬于自己特色的單元。

本文得出的是常應(yīng)變分片試驗的要求,同樣可以得出應(yīng)變或位移在什么情況下,能夠通過線性應(yīng)變的分片試驗。如果單元的位移參數(shù)較多,位移插值函數(shù)已含完全三次多項式,單元片在線性應(yīng)變情況下也應(yīng)計算準確,這樣才更值得我們增加參數(shù)。

參考文獻

[1]o.c.zienkiewiczandr.l.taylor,thefiniteelementmethod,(fourthedition),mcgraw-hillbookcompany,1988.

[2]唐立民,有限元分析的若干基本問題,大連工學院學報,1979,18(2),1-15

[3]唐立民,陳萬吉,劉迎曦,有限元分析中的擬協(xié)調(diào)元,大連工學院學報,1980,.19(2),19-35

[4]t.h.h.pian,derivationofelementstiffnessmatricesbyassumedstressdistributions,a.i.a.a.j.,1964,2(7),1333-1336

[5]t.h.h.pian,anddapengchen,alternativewaysforformulationofhybridstresselements,int.j.num.meth.eng.,1982,18,1679-1684

[6]龍馭球,辛克貴,廣義協(xié)調(diào)元,土木工程學報,1987,1,1-14

[7]陳紹春,石鐘慈,構(gòu)造單元剛度矩陣的雙參數(shù)法,計算數(shù)學,1991,3,286-296

[8]陳萬吉,單變量有限元的新思考:精化直接剛度法,計算結(jié)構(gòu)力學及其應(yīng)用,1993,10(4):263-268

[9]tanglimin,chenwanjiandliuyingxi,stringnetfunctionapproximationandquasi-conformingtechnique,hybridandmixedfiniteelementmethods,s.n.atluri,r.h.gallagherando.c.zienkiewicz,johnwiley&sons,1983.

[10]石鐘慈,陳紹春,九參數(shù)廣義協(xié)調(diào)元的收斂性,計算數(shù)學,1991,2,193-203

patchtestandfiniteelementmethod

abstract:thispaperrealizedthatthepatchtestisveryimportanttofiniteelementmethods.derivetherequirementtostrainanddisplacementofpatchtest.givetherelationshipbetweenweakformofcontinuityequationandthepatchtest,throughwhichthehybridelementmethodandquasi-conformelementmethodareanalyzed.refineddirectstiffnessmethodandgeneralizedconformingelementsarealsoanalyzedaboutwhytheycanpasspatchtest.atlast,asanexampleofusingtherequirementofpatchtestfordisplacement,improvedthebcizelement.

keywords:patchtest,weakform,string-netfunction,finiteelementmethod

五大连池市| 靖西县| 琼海市| 古田县| 蓬溪县| 江都市| 任丘市| 尼木县| 青龙| 揭阳市| 两当县| 开封市| 肥西县| 昆明市| 富宁县| 乌恰县| 汝南县| 富平县| 淮北市| 邛崃市| 准格尔旗| 石渠县| 萝北县| 长沙县| 石台县| 东至县| 崇文区| 藁城市| 饶河县| 宣化县| 濮阳市| 三门县| 哈密市| 准格尔旗| 赤壁市| 垣曲县| 政和县| 嘉善县| 临高县| 金坛市| 翁源县|