前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇養(yǎng)生保健方法范文,相信會為您的寫作帶來幫助,發(fā)現(xiàn)更多的寫作思路和靈感。
一、順應天時
人和動植物一樣,與宇宙間大自然是統(tǒng)一的整體。由于太陽和月球的不停運轉(zhuǎn),就產(chǎn)生了晝夜、時序(春夏秋冬)交替;氣候(寒熱溫涼)變化。人類在長期的生活實踐中,逐漸認識和適應了它的變化規(guī)律,采取多種防護措施,以保持身體健康,即“順應天時”。
祖國醫(yī)學對風、寒、暑、濕、燥、火的研究,稱為六氣學說。六氣太過,如大風暴雨、嚴寒酷暑、潮濕或干旱干燥過度的氣候,稍有不慎,就會感染疾病。如寒盛,則易患傷寒及多種寒??;風盛,則易患感冒及流行性熱病;暑熱盛,則易患傷暑和中暑;燥火盛,則易患口渴,鼻衄及多種炎癥;濕盛,則易患腹瀉及腎小球腎炎;風寒濕三氣雜至,則易患風濕病等。懂得這些知識,就會在氣候變化時,事先做好防護措施,避免疾病的發(fā)生。在穿衣方面,應注意“春棉漸漸減,秋衣徐徐添”,就是俗語說的“春捂秋凍”,不能猛添猛減,否則就容易感冒。不難看出,現(xiàn)代醫(yī)學中的多種急性傳染病,都有嚴格的季節(jié)性。有不少慢性病人,在氣候突變前,都有明顯的加重或不適感?,F(xiàn)代醫(yī)學叫做“醫(yī)學氣象學”。
二、心胸開拓,情緒樂觀
《素問?上古天真論》說:“恬淡虛無,真氣從之,精神內(nèi)守,病安從來?!币馑际钦f,人要心平氣和,無憂無慮,排除私心雜念,自然心胸開拓,情緒樂觀,氣機調(diào)和,精神飽滿,抗病能力增強,病從哪里來呢!《內(nèi)經(jīng)》又說:“怒氣傷肝,暴喜傷心,憂思傷脾,悲哀傷肺,驚恐傷腎。”這是說,過度的情緒激動,不良的精神刺激,可誘發(fā)多種疾病。例如,肝郁氣滯,積憂久郁,可致發(fā)多種精神、神經(jīng)病患和消化系統(tǒng)疾病,特別是老年心腦血管病患者,一遇精神刺激,可致腦血栓形成、腦溢血、急性心肌梗死等?,F(xiàn)代醫(yī)學叫做“醫(yī)學心理學”。
三、飲食有節(jié),不要偏食
《素問?臟氣法時論》說:“五谷為養(yǎng),五菜為充,五肉為益,五果為助。”《素問?五常政大論》說:“谷、肉、果、菜,食養(yǎng)盡之。勿使過之,傷其正也?!币馑际钦f,五谷雜糧是人類能量的來源,是主食;各種蔬菜,含有多種維生素和微量元素,是營養(yǎng)的補充;脂肪、蛋白質(zhì)等主要來源于各種肉類;各種水果,同樣含有多種維生素和果糖等,都對人體的營養(yǎng)有益。以上還說明兩個問題:一是說人的飲食要多樣化,營養(yǎng)才會全面,不要偏食,這種觀點和現(xiàn)代營養(yǎng)學的“雜食觀”是一致的;二是說飲食要有定量、有節(jié)制,不能過量,更不能暴飲暴食,或過度吸煙、酗酒等,以免致發(fā)肺炎、肺癌、胃腸病和肝病等。
四、適當運動,勞逸結(jié)合
人體要有適當運動。運動能使人骨骼強壯,肌肉發(fā)達,氣血流通,可以促進胃腸對食物的消化吸收,因而使精神煥發(fā),健康長壽。但運動的方法應因人而異。青壯年應采用體操、跑步、登山、游泳、各種武術(shù)等活動力較強的運動;老年人及慢性病患者應選擇氣功、太極拳、八段錦、五禽戲、六段功、干沐浴等柔軟運動,并要持之以恒。切忌劇烈的超負荷運動,反而有害于健康。
五、節(jié)制,保護腎臟
【關(guān)鍵詞】生物多樣性;細胞學標記;DNA分子標記
【Abstract】According to the Chinese Biodiversity Conservation Strategy and Action Planning (2010-2030), the continuous loss of genetic resources becomes one of three thorny issues threatening biodiversity conservation in China, which highlights the significance of genetic diversity monitoring plan in the future. After both Standard for the Assessment of Regional Biodiversity (HJ623-2011) and Regulation for the Collection of Genetic Resources (HJ628-2011) come into force, identification and collection of genetic resources becomes essential in biodiversity assessment projects. This review summarizes the front application of both cytological marker and DNA molecular marker techniques to distinguish plant varieties, and consequently the feasibility of large-scale application of DNA marker technique on future biodiversity monitoring and assessment projects is discussed.
【Key words】Biodiversity; Cytological marker; DNA molecular marker
0 Introduction
As one of three layers of biodiversity, which includes ecosystem, species and genetics, genetic diversity is the diversity of genetic factors that determine the traits of organisms and their combinations, so that becomes the basis of species and ecosystem diversity [1]. It is inevitable for a species of poor genetic diversity to move towards the extinction in natural selection process [2].
After a series of environmental policy has been worked out by centre government of China, such as Chinese Biodiversity Conservation Strategy and Action Planning (2010-2030), Standard for the Assessment of Regional Biodiversity (HJ623-2011) and Regulation for the Collection of Genetic Resources (HJ628-2011), it is essential for environmental engineers to include genetic diversity in biodiversity monitoring and assessment projects, and collection and identification of genetic resources in the nature definitely becomes the first step of this work. In present, identification of plant varieties mainly relies on the biological traits of plants[3], which are susceptible to environmental conditions and time-consuming when those biological traits are artificially cultivated and observed in experiment land [4]. However, the development of DNA marker technology provides a quicker and more accurate solution for environmental engineers to distinguish different sub-populations of a plant species in the nature, particularly when identification of economic traits is not essential in biodiversity assessment work. This review summarizes both cytological marker and DNA molecular marker for the differentiation of plant cultivars in recent years.
1 Cytological Marker
Due to its high stability and reproducibility, karyotype becomes one of the unique chromosome information to distinguish different species, populations of the same species and to identify the hybrids. Karyotype parameters, mainly including the absolute length and relative length of chromosome, arm ratio, centromere index, chromosome ploidy and asymmetry index, are frequently analyzed by botanists to study the variation in chromosome number and structure between species, the origin of species and the genetic evolution[4].
1.1 Traditional squash technique
Zhang etc [5] analyzed karyotype of three Fritillari thunbergii cultivars based on traditional squash technique. The karyotype formula of F. thunbergii (Xiaye, Kuanye, Duozi) varied among three varieties, indicating the feasibility of genetic identification of Fritillari thunbergii cultivars. The karyotype of all the varieties were classified into 3B type, and heterozygosity of homologous chromosome were found in both F. thunbergii(Xiaye) and F. thunbergii(Duozi).
The karyotype of three diploid oat species was studied by Liu etc [6] with application of traditional squash technique. Both karyotype formula and asymmetry index of Avena strigosa, Avena hispanica, Avena brevis were calculated for comparison, revealing more advanced evolution in karyotype for A.strigosa, followed by A.a brevis and A.hispanica. Three diploid oat species were effectively distinguished by a combination of both karyotype formula and asymmetry index.
The traditional slice-making method with micrograph technology was adopted by Dai etc[7] to study the cytology basis for cultivar identification of Secale cereale subsp.segetale. Three populations of Secale cereale subsp.segetale(89R4, 89R14, 89R60) and one variety Secale cereale L.(H36) were selected to conduct karyotype analysis. Karyorype formulae, asymmetry index and asymmetrical karyotype coefficient were provided and compared among these varieties in this research, which showed rich diversity in chromosome morphology.
Traditional squashing method was adopted by Liu etc[8] to analyze the karyotype of 7 R.hybrida cultivars and 5 R.rugosa cultivars. According to the results, all the R.hybrida cultivars were tetraloid (2n=4x=28), except that R.hybrida ‘Elmshorn’ was triploid (2n=3x=21), while all the 5 R.rugosa cultivars were diploid (2n=2x=14). A number of karyotype parameters, including karyotype formula, chromosome relative length, ratio of the longest chromosome to the shortest one in length, arm ratio, asymmetry index and centromere index, were interpreted as biomarkers for identification of varieties and correspondingly the genetic distance was analyzed, revealing that distinct differences in both karyotype and ploidy levels existed between R.hybrida and R.rugosa cultivars and R.rugosa cultivars appeared to be more advanced in karyotype evolution.
21 cultivars’ karyotype of ornamental Ginkgo was studied by Gao etc [9] with smear method. The karyotype of all cultivars was reported to be identical, and the relative length of chromosome varied from 4.31% to 15.34% for the female cultivars, as well as 4.37% to 17.12% for the male. For approximately 83.33% of all the varieties in this research, the arm ratio of chromosome was above 2:1, which belonged to asymmetric 3B type. Cluster analysis was conducted on the basis of karyotype calculation, showing that the mean arm ratio or length ratio of ornamental Ginkgo cultivars was significantly different from original Ginkgo Biloba, and consequently the originality, evolution and classification of these cultivars were discussed.
In total 6 varieties of Hippophae Rhamnoides L. were selected by Li etc[10] to analyze karyotype characteristics of chromosomes, including 4 strains from Russia and 2 strains from China. Karyotype formula, asymmetry index, centromere index and ratio of the longest chromosome to the shortest one in length were compared and contrasted between these varieties, providing the basis for the identification and evolutionary analysis of Hippophae Rhamnoides L. varieties. According to the asymmetry index, six of these cultivars were classified into middle centromere or sub-middle centromere, with karyotype types as 2A or 2B.
40 typical and stable varieties of Chinese large-flowered chrysanthemum were chosen to carry out cytological karyotype analysis for investigation of genetic differences[11]. 1-4 satellite chromosome(s) were reported in approximately 35% of the cultivars, with increasing possibility of satellite chromosome when chromosome number increased. The karyotypes of these varieties were summarized as 2A, 2B and 2C, and types 2A and 2C were more likely to appear in the cultivars with higher ploidy. The interrelationship of karyotype parameters including long-/short-arm ratio, asymmetry coefficient of karyotypes, karyotype asymmetry index and relative length of chromosomes were discussed in this research, indicating great values of karyotype parameters for cultivar identification, classification and genetic evolution analysis for chrysanthemums species. The relationship of karyotype parameters towards phenotypic characters was also examined, revealing that the variation of long-/short-arm ratio and asymmetry coefficient of karyotypes led to highest relevance to most phenotypic characters.
Wild Rosa species, which are broadly found in the Xinjiang Uygur autonomous region of China, possess many important unknown economic traits. Yu etc[12] collected karyological data from 13 samples of seven wild Rosa taxa (R. berberifolia, two botanical varieties of R. spinosissima, R. platyacantha, R. beggeriana, R. acicularis, and R. laxa), which were easily distinguished by karyotype parameters of chromosome ploidy, asymmetry index, centromere index, and distribution of relative lengths. The karyological data provided comprehensive cytogenetic resource to analyze the taxonomy, evolution and speciation in the genus Rosa as well as to identify suitable cultivars for breeding programs.
1.2 Fluorescence in situ hybridization (FISH) technique
Fluorescence binding technology with fluorescent dyes, which are capable of revealing AT or GC DNA sequences on chromosomes, can distinguish different types of heterochromatin on the chromosomes. For example, DAPI (4',6-diamino-2-pheny- lindole dihydrochloride) results in the appearance of AT rich region on chromosomes, whereas CMA (Chromomycin A3) can reveal the GC rich region [13]. Fluorescence in situ hybridization (FISH) technique provides the accurate mapping information of rDNA probes on the chromosome, which becomes the more effective markers to distinguish chromosomes of plants [14]. She etc [15] analyzed the mitotic metaphase chromosomes of Arachis hypogaea L. species by using a combination of DAPI+ banding technology and double fluorescence in situ hybridization (FISH) technique with both 5S and 45S rDNA probes. On the basis of the chromosome measurements, DAPI+ bands and rDNA FISH signals, the chromosomes of Arachis hypogaea L. were accurately paired and arranged, leading to a molecular cytogenetic karyotype in detail.
However, DAPI banding patterns varies between different plant species. Xu etc[16] compared DAPI fluorescent banding patterns among different plant species, indicating that fluorescent bands were obviously observed in maize and peanut species, followed by sesame and loofah whose DAPI bands were relatively weaker. However, no clear DAPI bands could be identified in soybean chromosomes.
2 DNA Molecular Marker
DNA molecular marker technologies for plant variety identification mainly include RFLP, RAPD,ISSR,AFLP,SNP and SSR. However, the ranking of these molecular marker techniques based on comprehensive effectiveness is AFLP>SSR>RAPD>RFLP, which has been internationally recognized in the 92th ASHS conference[17]. This review summarizes the recent development of both SSR and AFLP marker technology for variety differentiation.
2.1 SSR marker
EST-SSR molecular marker technique was conducted by Zhao etc [18] to identify 12 Chinese cabbage cultivars. Based on expressed sequence tags(ESTs)of Chinese cabbage in GenBank, 30 pairs of screened SSR primers were designed and synthesized, resulting in 21 pairs of EST-SSR primers which were effectively amplified, but only 10 pairs of EST-SSR primers were highly polymorphic. According to the identification results and the mapping difference, 10 pairs of primers with high polymorphism were designed as 2 sets of multiplex EST-SSR markers to distinguish these 12 Chinese cabbage varieties, with satisfactory polymorphic rate of 88.9% and 97.0% respectively, as well as high polymorphism information content of 0.910%.
Lai etc[19] selected 26 inbred lines and 54 test varieties for the examination of distinctness, uniformity and stability (DUS) of these varieties by adopting SSR markers. 49 pairs of SSR primers were screened from 952 pairs in total, based on the criteria of richness of polymorphism information content (PIC), the clearness of PCR bands and convenience of different allele identification. 49 pairs of SSR primers led to 57 loci with 311 alleles identified in total. The average number of alleles per locus was 5.5, ranging from 2 to 13, with a mean PIC of 0.53. Cluster analysis showed that all test varieties were clearly distinguished by 49 markers when the genetic similarity coefficient was set as 0.93.
In order to provide robust reference for the identification of barley varieties and avoid counterfeit and inferior varieties, Wang etc [20] selected 29 barley standard varieties and genetic diversity was analyzed by DUS testing. 28 pairs of highly polymorphic SSR primers were chosen, leading to 125 alleles measured in total. Each pair of polymorphic primers detected an average of 4.46 alleles, with polymorphism information content (PIC) varying from 0.81 to 0.25 and an average PIC of 0.62 among 28 pairs.
The specificity and stability of 123 representative rice varieties were analyzed by Tian ect[21] based on SSR fingerprinting profiles, and the value of SSR core markers chosen in this study was examined. 24 pairs of primers detected 138 alleles in total, with 12 loci detected in single cultivar and 21 loci successfully distinguishing japonica and indica rice varieties. On the basis of genetic similarity coefficient set as 0.96 for the classification, all tested varieties showed their unique specificity by cluster analysis, which indicated that 24 pairs of SSR core primers was able to effectively identify 123 varieties of rice.
2.2 AFLP marker
Six pairs of AFLP primers with rich polymorphism were screened by Li etc[22] to conduct fingerprinting analysis on two Chinese cabbage samples (label 587 and 586) as well as a standard sample. Euclidean distances coefficient of each sample was estimated, indicating that distinct difference was found between the sample 587 and standard sample, with the polymorphism band rate of 31.7%. Consequently variety 587 was identified as a different variety from the standard sample. In comparison, variety 586 showed consistent PCR bands with the standard sample, which was consequently identified as the same variety as the standard sample. This research demonstrated that AFLP was capable of providing reliable differentiation technology for plant cultivars.
In total 14 samples of eight varieties and six wild populations of Toxicodendron vernicifluum from Shaanxi were chosen by Wei etc [23] for the development of variety identification technique. Both morphological and AFLP molecular markers were examined with 26 morphological character indexes and 8 AFLP primers (EcoRⅠ+3/MseⅠ+3). Multivariate statistic analysis was conducted on morphological markers, resulting in 3 principle component index (PCI). The fist PCI included the ratio of petal and anther, length to width of the fifth lobular, the length and diameter of filament; the second PCI covered the length of compound leaf and petiole of compound leaf, the numbers of leaflet, the fifth lobular, and the top lobular; and the third PCI were the top lobular and the vertex angle of the fifth lobular, which respectively contributed to 30.383%, 19.321% and 13.777% of variance in morphology of 14 varieties. Further more, molecular markers of 8 AFLP primers (EcoRⅠ+3/MseⅠ+3) also completely distinguish 14 cultivars, in consistence with morphological markers.
Wen etc[24] tried to distinguish 26 jujube cultivars and 1 sour jujube by adopting fluorescent-labeled AFLP markers. 8 AFLP primer pairs were chosen, leading to 886 AFLP markers identified in total. Among these AFLP markers, 112 markers were identified as unique bands for specific varieties, whereas 60 markers were deletion bands for specific varieties, leading to effective identification of jujube cultivars.
Song etc[25] chosen 90 cultivars of Chinese cabbages from 7 different production areas, and developed fingerprinting technique based on AFLP markers for the identification. In total 20 pairs of AFLP primers were designed to examine the genetic polymorphism of these cultivars, and AFLP primers varied broadly in terms of differentiation capacity of Chinese cabbage varieties. The number of polymorphic bands that were detected by AFLP primers differed from 9 to 32. A combination of primers (E-ACA/M-CTG) resulted in 71 amplified bands, including 32 polymorphic bands, which effectively distinguished all of the 90 varieties. In comparison, the genetic polymorphism between individuals of the same variety was also examined by AFLP marker technique. Two hybrid cultivars (Beijingxin 2 and Jingxiawang) of Chinese cabbage were selected and 10 individuals were chosen from each cultivar. The AFLP bands showed consistence between individuals of the same variety, except that one of Beijingxin 2 differed from the others.
2.3 Capillary electrophoresis with fluorescence detection
Compared with polyacrylamide gel electrophoresis and silver staining technique, capillary electrophoresis with fluorescence detection method is more automated and programmed. The system software of capillary electrophoresis with fluorescence detection is able to calibrate the differences between capillary electrophoresis, and reduce the artificial and systematic errors, which consequently improves the stability and repeatability of variety identification tests [26]. Feng etc[3] screened 58 SSR primers to identify 14 Poplar varieties by application of capillary electrophoresis with fluorescence detection, which included 4 varieties of Populus deltoids, 5 varieties of Populus nigra (including 3 transgenic varieties) and 4 hybrid varieties. The results showed that the 4 varieties of P. deltoids, 5 varieties of P. nigra, and 4 hybrid varieties were effectively identified by 4 primers, 5 primers, and 4 primers respectively, with significant difference observed at the SSR loci between P. deltoides and P. nigra. Different SSR genotypes were also identified between the transgenic and non-transgenic varieties.
3 Conclusion and Implication for Biodiversity Monitoring and Assessment
In comparison to the DNA molecular marker, cytological marker techniques result in less polymorphism for the sub-populations’ differentiation of a plant species, but obviously reduce the cost of this work, once biodiversity monitoring and assessment projects are implemented at large scale. Consequently, cytological marker would be more suitable as the main solution for environmental engineers to conduct genetic resource collection work, based on which DNA molecular marker would become a complementary solution. Capillary electrophoresis with fluorescence detection method certainly leads to higher accuracy and stability for identification tests. Nevertheless, the relatively cheaper facilities required by polyacrylamide gel electrophoresis and silver staining technique would be more acceptable in practice, which has been adopted by recent National Standards including Protocol of Purity Identification for Soybean Variety using-SSR Molecular Markers (NY/T 1788-2009), as well as Genuineness and Purity Verification of Potato Seed Tuber - SSR Molecular Marker (GB/T 28660-2012).
Collection and storage of sampling location information as well as photos of plant morphological characters are usually necessary for the genetic resource collection work as indicated by Regulation for the Collection of Genetic Resources (HJ628-2011), and GIS technology provides a supportive tool for the collection and storage of both location information and field sampling photos [27] in this process.
【參考文獻】
[1]李昂,葛頌.植物保護遺傳學研究進展[J].生物多樣性,2002(1):61-71.
[2]C, A.J., H.J. L. Conservation Genetics, Case Histories from Nature[M]. Chapman & Hall, New York,1996.
[3]馮錦霞,等.利用熒光SSR標記鑒別楊樹品種[J].林業(yè)科學,2011(6):167-174.
[4]周延清, 張改娜,楊清香.生物遺傳標記與應用[M].化學工業(yè)出版社,2008.
[5]張彥南,等.浙貝母主要栽培品種類型花粉形態(tài)及染色體核型研究[J].中國中藥雜志,2013(19):3265-3270.
[6]劉偉,張宗文,吳斌.加拿大引進的二倍體燕麥種質(zhì)的核型鑒定[J].植物遺傳資源學報,2013(1):141-145.
[7]代明,等.新疆雜草黑麥染色體核型分析[J].麥類作物學報,2013(3):440-444.
[8]劉佳,等.7個月季和5個玫瑰品種的核型分析[J].西北農(nóng)林科技大學學報:自然科學版,2013(5):165-172.
[9]高進紅,等.銀杏觀賞品種染色體核型分析[J].山東農(nóng)業(yè)大學學報:自然科學版, 2005(1):19-24.
[10]李洪梅,等. 核型分析技術(shù)在沙棘品種進化研究中的應用[J].濟南大學學報:自然科學版, 2013(1):97-101.
[11]ZHANG, Y., M. ZHU, S. DAI. Analysis of karyotype diversity of 40 Chinese chrysanthemum cultivars[J]. Journal of Systematics and Evolution,2013,51(3):335-352.
[12]Yu, C., et al.. Karyotype Analysis of Wild Rosa Species in Xinjiang, Northwestern China[J]. Journal of the American Society for Horticultural Science, 2014.139(1):39 -47.
[13]T., S.A.. Chromosome banding[M]. London: Unwin Hyman, 1990.
[14]佘朝文,宋運淳. 植物熒光原位雜交技術(shù)的發(fā)展及其在植物基因組分析中的應用[J].武漢植物學研究,2006(4):365-376.
[15]佘朝文,張禮華,蔣向輝.花生的熒光顯帶和rDNA熒光原位雜交核型分析[J]. 作物學報,2012(4):754-759.
[16]徐延浩,高偉,張文英.不同作物染色體DAPI熒光顯帶的研究[J].吉林農(nóng)業(yè)科學,2013(2):27-28+51.
[17]鄭成木.植物分子標記原理與方法[M].湖南科學技術(shù)出版社,2003.
[18]趙新,等.復合EST-SSR標記在大白菜品種鑒定中的應用[J].生物技術(shù)通報, 2013(1):107-110.
[19]賴運平,等.利用SSR標記篩選DUS測試中甘藍型油菜近似品種[J].分子植物育種,2013(2):174-184.
[20]王艷平,等.大麥DUS測試標準品種的遺傳多樣性分析及指紋圖譜的構(gòu)建[J]. 麥類作物學報,2013(2):273-278.
[21]田大剛,等.123份水稻重要品種的SSR核心標記指紋分析[J].分子植物育種, 2013(1):20-29.
[22]李麗,鄭曉鷹.AFLP分子標記應用于白菜品種鑒定[J].分子植物育種,2006(5):685-689.
[23]魏朔南,等.應用植物形態(tài)學和AFLP分子標記鑒別陜西漆樹品種[J].西北植物學報,2010(4):665-671.
[24]文亞峰,何鋼,張江.棗優(yōu)良品種分子鑒別系統(tǒng)的開發(fā)[J].中南林業(yè)科技大學學報,2007(6):119-121.
[25]宋順華,鄭曉鷹.AFLP分子標記鑒別大白菜品種[J].分子植物育種,2005(3):381-387.
國家中醫(yī)藥管理局副局長馬建中在“中醫(yī)養(yǎng)生保健治未病健康工程學術(shù)大會”上說,要多方研討?zhàn)B生保健“治未病”的深刻內(nèi)涵,繼承創(chuàng)新中醫(yī)藥預防保健方法和技術(shù),促進中醫(yī)養(yǎng)生保健服務的全面發(fā)展。
早在2000年前《黃帝內(nèi)經(jīng)》中提出的“治未病”理念,一直是中醫(yī)藥重要思想,始終貫穿于中醫(yī)藥預防保健治療康復等各個環(huán)節(jié)。馬建中說,近年來,隨著健康觀念和醫(yī)學模式的深刻變化以及醫(yī)學目的的重大調(diào)整,“治未病”這一古老而前沿的理念,顯現(xiàn)出獨特的優(yōu)勢和魅力。建立在“培元固本”、“辨證論治”基礎上的養(yǎng)生理論、內(nèi)外兼修的養(yǎng)生功法、治外調(diào)內(nèi)的經(jīng)絡技術(shù)、調(diào)節(jié)臟腑的養(yǎng)生產(chǎn)品,對當今重大疾病尤其是老年病和慢性病方面,有著明確的現(xiàn)實意義。當一些所謂現(xiàn)代病、文明病相繼出現(xiàn)之時,“未病先防,已病防變,愈后防復”的系統(tǒng)理論及靈活多樣的技術(shù)手段,體現(xiàn)出重要的應用價值。
馬建中說,中醫(yī)養(yǎng)生在社會各個層面廣受歡迎,中醫(yī)“治未病”思想受到廣泛關(guān)注,各級政府推動中醫(yī)養(yǎng)生預防保健的力度不斷加大,廣大人民群眾尤其是中老年人群、亞健康人群、老慢病人群從中獲益匪淺,中醫(yī)養(yǎng)生保健“治未病”面臨良好的發(fā)展機遇。但是,我們也看到,中醫(yī)“治未病”的理念尚未得到廣泛普及,服務模式尚需不斷完善,服務質(zhì)量有待提高,手段和形式需要豐富,專業(yè)技術(shù)隊伍缺乏,服務體系尚未形成,尚不能滿足人民群眾日益增長的健康需求。同時,廣大群眾對于中醫(yī)養(yǎng)生基本知識、基本原理的認知有限,對于當前中醫(yī)養(yǎng)生的各種說法和做法不具有判斷力,一些打著養(yǎng)生旗號的人用極端的、片面的、違反中醫(yī)基本原理的甚至是欺騙的手段,不實傳播,在社會上造成大眾對中醫(yī)養(yǎng)生的認知偏差,長此以往,將對整個中醫(yī)藥的健康發(fā)展產(chǎn)生不利影響。
馬建中強調(diào),當前在醫(yī)藥負擔不斷增加的大環(huán)境下,中醫(yī)養(yǎng)生在社會上受到前所未有的重視,國家將加大對中醫(yī)養(yǎng)生保健的推廣和投入:一是不斷創(chuàng)新和推廣“有特色、系統(tǒng)化、實用性”相結(jié)合的中醫(yī)養(yǎng)生保健服務方案,發(fā)揚光大“治未病”思想,為眾多中老年、亞健康、老慢病人群提供優(yōu)質(zhì)的中醫(yī)養(yǎng)生保健服務;二是中醫(yī)養(yǎng)生既要有理論深度,又要有科普宣傳,要堅持“科學客觀、實事求是、以人為本、服務社區(qū)”的原則,讓廣大群眾學習到中醫(yī)養(yǎng)生思想真實內(nèi)涵,真正讓群眾受益;三是要積極引導中醫(yī)養(yǎng)生產(chǎn)業(yè)健康發(fā)展、自我約束、科學規(guī)范。
“中醫(yī)養(yǎng)生保健治未病健康工程”由中國保健協(xié)會、中華中醫(yī)藥學會、元潤堂治未病研究院共同發(fā)起,以學術(shù)方式推動中醫(yī)養(yǎng)生的繼承和傳播,旨在推廣科學的養(yǎng)生保健文化,推行正確的養(yǎng)生保健方法,推進健康的養(yǎng)生保健方式,建立完善的養(yǎng)生保健體系,探索并構(gòu)建能滿足人民群眾日益增長的養(yǎng)生保健需求的健康機構(gòu),讓真正優(yōu)秀的傳統(tǒng)養(yǎng)生文化與技術(shù)為當今和諧社會服務。
早在二千多年前,我國的第一部中醫(yī)典籍《黃帝內(nèi)經(jīng)》中就明確提出:“上古之人,其知道者,法于陰陽,和以術(shù)數(shù),食飲有節(jié),起居有常,不妄作勞,故能形與神俱,而盡終其天年,度百歲乃去。”這里所講的“天年”就是指人類的自然壽命應該是超過百歲。
現(xiàn)代醫(yī)學對人類壽命的認識主要有三種不同的觀點:第一種觀點認為動物和人的壽命與其生長期有關(guān),凡生長期長的,壽命就長,并以生長期作為標準,推測壽命是生長期的5~7倍。因為人類的生長期為20~25年,所以壽命應為100~175歲。第二種觀點認為動物與人的壽命與性成熟期有關(guān),性成熟期長的,壽命就長,并以性成熟期為標準,壽命是性成熟期的8~10倍。人類的性成熟期為14~15歲,壽命應為110~150歲。第三種觀點是美國學者海爾弗利于1961提出來的,是以胚胎細胞傳代的次數(shù)來推算壽命,人類的細胞傳代次數(shù)為50~60次,壽命應為100~120歲。目前絕大多數(shù)老年醫(yī)學學者都認為人類的最長壽命應該是110~120歲。從整體來分析,人類自10~15歲以后隨著年齡的增長死亡率也逐年上升,能活到百歲的老人是很少見的,而突破110~120歲壽命界限的老年人更是罕見。
所以說,無論是我國的傳統(tǒng)醫(yī)學還是現(xiàn)代醫(yī)學都認為人類的壽命期限應該是百歲以上。
健康長壽靠自己
《黃帝內(nèi)經(jīng)》認為那些“半百歲而衰”的人就是因為不懂得養(yǎng)生之道,生活無規(guī)律,“以酒為漿,以妄為常,醉以入房,以欲竭其精,以耗散其真……故半百而衰也?!?/p>
世界衛(wèi)生組織(WHO)對人類健康與長壽因素進行系統(tǒng)地分析后宣布:“每個人的健康與長壽,60%取決于自己,15%取決于遺傳因素,10%取決于社會因素,8%取決于醫(yī)療條件,7%取決于氣候環(huán)境的影響”。WHO的分析結(jié)果說明,影響人類健康與長壽的因素主要是個人因素造成的(60%),也就是說每個人的心理健康、生活方式和行為習慣都是影響健康長壽的重要因素。
所以說,人們的壽命不能達到百歲主要是自己不注意養(yǎng)生保健造成的。北京是知識分子最為集中地區(qū),然而一份跟蹤了近10年的“知識分子健康調(diào)查”表明,這一人群平均壽命從10年前的58~59歲降至調(diào)查時期的53~54歲,50歲左右的中年人死亡率上升最快,中青年人猝死或過勞死時有發(fā)生。中關(guān)村是高科技人才密集的地方,但其中近八成的人卻因為忙于工作而沒有時間和精力去關(guān)注自己的健康,他們在創(chuàng)造財富的同時也在不斷地透支著健康和生命。同時,我們還看到像牛玉儒這樣的好干部卻因工作過度勞累而英年早逝。
北京的調(diào)查還發(fā)現(xiàn),以高血壓、糖尿病為代表的生活方式疾病呈逐年上升之勢,有1/3的人不同程度地患有這些疾病,而生活方式疾病的高危人群覆蓋面達95.5%。天津市腫瘤醫(yī)院專家在“2004年天津市腫瘤防治宣傳周”提出,約有五成的癌癥與飲食因素有關(guān),調(diào)整飲食結(jié)構(gòu)可減少三成癌癥的發(fā)生。最新的一項統(tǒng)計表明,在我國時刻關(guān)注健康,健康意識較強的人只占了17%,大多數(shù)人缺乏健康意識。
教育家陶行知說:“忽視健康,就等于拿自己的生命開玩笑!”我們的新聞媒體在宣傳先進人物的時候,往往是過分強調(diào)他們廢寢忘食、夜以繼日的工作態(tài)度,從不宣傳和提倡健康的生活方式,所以對人民大眾有一定的誤導作用。應該說,我們的社會更需要心身健康的好干部和科技精英,我們希望他(她)們長命百歲。
養(yǎng)生保健觀念上的誤區(qū)
但是,人們對養(yǎng)生保健的認識和理解也常常存在著不少的誤區(qū),不但影響健康有時甚至可以造成人體危害。
1.認為養(yǎng)生保健是中老年人的事,與青少年沒有關(guān)系
這種認識是非常錯誤的。因為養(yǎng)生保健是一個長期的系統(tǒng)工程,需要從小抓起,在這里套用小平同志的一句話,叫做“養(yǎng)生保健要從娃娃抓起”。許多人會說,青少年正是生長發(fā)育的時期,生龍活虎的還需要什么養(yǎng)生保健。其實,中老年時期的健康與否與青少年時期的養(yǎng)生保健做得如何有著非常重要的關(guān)系。
我們以對中老年人危害最大、造成老年人死亡率最高的心腦疾病為例。大家都知道引發(fā)中老年人的心腦疾病的主要原因是動脈粥樣硬化,而動脈硬化的發(fā)展有著一個長期緩慢的過程,并不是中老年才出現(xiàn)的。近年來的研究發(fā)現(xiàn),兒童時期的動脈上已經(jīng)出現(xiàn)“脂質(zhì)條紋”,這種條紋的出現(xiàn)標志著動脈硬化剛剛開始形成,至青年時期已有少量脂質(zhì)斑塊出現(xiàn)在動脈壁上,并隨著年齡的增加而不斷增長,發(fā)展至影響心腦血管的血液供應時便會引發(fā)心腦血管疾病,嚴重者甚至危及生命。如果自兒童時期即開始注意養(yǎng)生保健措施的預防,就會明顯推遲動脈硬化的過程和減少心腦血管疾病的發(fā)生。
2.希望用一種簡單的方法,就能夠達到養(yǎng)生保健的目的
人體的生長發(fā)育、衰老死亡是一個非常復雜的過程,與人的個體情況和外界環(huán)境均有著密切的關(guān)系。也就是說,人體的健康長壽與遺傳、社會環(huán)境、氣候環(huán)境、醫(yī)療條件和個人的生活方式均有關(guān),所以不是一兩種養(yǎng)生保健方法就能保證自己健康長壽的。就個人因素而言,最少要通過五種養(yǎng)生保健的方法才能做到:一是要心態(tài)平和,處世樂觀;二是要起居有常,生活規(guī)律;三是要飲食有節(jié),合理營養(yǎng);四是要適量運動、持之以恒;五是要根據(jù)體質(zhì),適度滋補。前四種適合于所有的人,最后一種僅適合體質(zhì)虛弱的人。只有進行綜合性地養(yǎng)生保健才能取得滿意的效果。
由于人們希望有一種簡單的方法就能夠起到全面的養(yǎng)生保健作用的心理,所以當宣傳某種方法能防病治病時,往往從者甚眾,卻收效甚微,有時甚至會對機體造成危害。如數(shù)十年前曾風靡全國的“注射雞血療法”,到前幾年出現(xiàn)的“甩手療法”均屬此類。還有人認為經(jīng)常服用某些高級保健品就能起著養(yǎng)生保健作用,這些認為都是錯誤的。
3.被廣告宣傳所誤導
目前,由于我國政府部門對廣告宣傳的監(jiān)管不利,各種媒體上的保健品廣告鋪天蓋地,有些保健品任意夸大效果,宣傳嚴重失實。盡管人們已經(jīng)越來越理智地對待廣告宣傳,但是還是有一些人對認識不清,甚至錯誤地認為越昂貴的保健品的效果就越好。還有的人認為,吃保健品是有病治病,無病強身,于是,廣告上說補鈣好就買鈣片,說補鋅好就買鋅片,說腎虛就補腎,說血虛就養(yǎng)血,保健品吃了不少,花了不少錢,但有時效果并不理想,甚至吃出了一些副作用。
問:烏偉?艾雄先生,你是德國索林根太極道養(yǎng)生學會會長,羅冰女士是內(nèi)養(yǎng)功的老師,你們多年來在德國進行內(nèi)養(yǎng)功養(yǎng)生保健培訓,并帶領(lǐng)德國朋友多次到中國北戴河醫(yī)學氣功培訓基地學習內(nèi)養(yǎng)功養(yǎng)生保健功法,請二位談談對內(nèi)養(yǎng)功的認識。
答:內(nèi)養(yǎng)功發(fā)源于中國,現(xiàn)在已經(jīng)走進德國,走向世界。為什么德國、法國等許多國家的人們喜歡學習和練習內(nèi)養(yǎng)功呢?這是因為內(nèi)養(yǎng)功是很好的養(yǎng)生保健功法。大家都知道,任何事物的發(fā)展變化,內(nèi)因起主要作用,外因要通過內(nèi)因起作用。參加劉亞非老師的培訓和多年的實踐不斷認識和理解內(nèi)養(yǎng)功這個“內(nèi)”字就是要通過內(nèi)求的方法調(diào)動人體內(nèi)部的能力,更好地提高和改善人體的內(nèi)環(huán)境,加強人體的各部分功能,使陰陽平衡,達到一個新的狀態(tài)。隨著高效率、快節(jié)奏的生活工作方式以及競爭給人們帶來的壓力,長期的緊張極易導致各種疾病的發(fā)生,如高血壓、冠心病、腸胃病、呼吸系統(tǒng)疾病和神經(jīng)衰弱、失眠等疾病。內(nèi)養(yǎng)功的功法首先使人身各部位、各器官放松,“放松”對養(yǎng)生保健起著重要作用。通過練習內(nèi)養(yǎng)功的松靜法,通過調(diào)整意念、調(diào)形調(diào)息、動靜相兼等內(nèi)容,使身體各個部位達到松融,精神意念達到恬靜,就有助消除緊張,改善血液循環(huán),起到防治高血壓、心血管病、胃腸疾病和神經(jīng)衰弱、失眠等疾病的作用。內(nèi)養(yǎng)功功法除了放松作用外,還有通過特殊的停閉呼吸法促進新陳代謝、疏通經(jīng)絡、調(diào)和氣血、平衡陰陽的作用。中國醫(yī)學講,通則不痛,痛則不通,內(nèi)養(yǎng)功功法能起到疏通經(jīng)絡、血脈、呼吸、器官的作用,自然而然就起到了養(yǎng)生保健的作用。
另外要說明的是,人患病后,對癥服藥是必要的,但是凡藥三分毒,有些藥物副作用很大,如治療青春痘的異維A酸膠丸,長期服用有人可患抑郁癥,甚至造成自殺的惡果。而內(nèi)養(yǎng)功的練習沒有副作用,只要掌握正確的練功方法,并持之以恒練功,就會收到良好的效果,所以我們稱內(nèi)養(yǎng)功是沒有副作用的綠色養(yǎng)生保健法。我們太極道養(yǎng)生學會隸屬于德國科隆體育大學,所辦的兩年制的成人再教育班,內(nèi)養(yǎng)功是必修課。
問:既然德國人認識到內(nèi)養(yǎng)功是很好的養(yǎng)生保健功法,在德國是如何開展內(nèi)養(yǎng)功養(yǎng)生保健活動的?
答:德國很多人都知道內(nèi)養(yǎng)功,并學練內(nèi)養(yǎng)功,不僅有一些民間的學術(shù)團體組織學習、推廣和應用,而且在一些研究機構(gòu)、大學和醫(yī)療機構(gòu)也開展內(nèi)養(yǎng)功的培訓和研究。在德國西部有波恩氣功養(yǎng)生學會,中部有索林根太極道養(yǎng)生學會,在首都柏林成立了“內(nèi)養(yǎng)功培訓中心”和守中中醫(yī)學校,專門開設了內(nèi)養(yǎng)功的師資培訓和醫(yī)師培訓,在法蘭克福有“內(nèi)養(yǎng)功學校”,南部慕尼黑等城市有中醫(yī)學校和德國氣功協(xié)會,也都開展內(nèi)養(yǎng)功的培訓和學習。從1996年起,在十幾年里,除了以上各個組織每年在全國招生舉辦內(nèi)養(yǎng)功培訓班外,奧登堡大學、宏堡醫(yī)科大學、愛蘭恩醫(yī)學院等也相繼并展了內(nèi)養(yǎng)功的培訓和研究。劉亞非老師和馮益建老師到德國講學,他們的足跡遍及德國許多地方,給德國人民送來了內(nèi)養(yǎng)功、太極拳功法,送來了健康,送來了友誼。我們也每年在全國招生,到中國北戴河氣功培訓基地來進修、學練內(nèi)養(yǎng)功和太極拳,僅德國太極道養(yǎng)生學會前后10年,就有200多人來北戴河接受培訓?;氐降聡?除自己養(yǎng)生保健外,很多人已成為輔導員或老師。目前,在德國很多地方都開展對內(nèi)養(yǎng)功的培訓、應用和研究工作。德國有8200萬人口,其中有十幾萬人學練氣功和太極拳。通過學練內(nèi)養(yǎng)功和太極拳,許多人的免疫力提高了,收到了健康身心的良好效果。我們相信不久的將來,會有更多的人學練內(nèi)養(yǎng)功,德國有可能成為學練內(nèi)養(yǎng)功的王國。
問:德國開展內(nèi)養(yǎng)功養(yǎng)生保健活動很活躍,是否與德國政府的支持有關(guān),請介紹一下德國政府是如何支持內(nèi)養(yǎng)功養(yǎng)生健身活動的?
答:你說的很對,德國政府給了氣功和太極拳在德國開展的廣泛空間,并且通過大學和研究機構(gòu)的參與加入,使其應用與研究層次很高。這也是德國政府的聰明之處,他們明白,通過學練氣功,能夠增強國民的身心素質(zhì),國民不生病、少生病,身體健康,一來國民減少生病的痛苦,二來減少國家、醫(yī)療保險公司的開支,這是件對國家對人民都有好處的事情。因此,國家不干涉氣功養(yǎng)生保健活動,而是給予一定的支持。政府支持醫(yī)療保險機構(gòu)承認氣功保健,對于氣功預防疾病的效果予以肯定。并明文規(guī)定,凡參加有德國資質(zhì)氣功老師(包括內(nèi)養(yǎng)功)培訓班的人員,醫(yī)療保險公司給予報銷一定數(shù)額的培訓費。參加中國劉亞非老師內(nèi)養(yǎng)功培訓的學員,德國醫(yī)療保險公司專門批示,列入此報銷范圍內(nèi)。在德國北威州還有一條特殊的規(guī)定,參加有資質(zhì)氣功老師氣功培訓的,可以從歐盟基金里報銷培訓費。德國有的企業(yè)還規(guī)定,凡參加7天以內(nèi)各種進修培訓的,其中包括參加氣功和太極拳培訓,不算休假,不扣工資。