在线观看av毛片亚洲_伊人久久大香线蕉成人综合网_一级片黄色视频播放_日韩免费86av网址_亚洲av理论在线电影网_一区二区国产免费高清在线观看视频_亚洲国产精品久久99人人更爽_精品少妇人妻久久免费

首頁 > 文章中心 > 正文

獨(dú)立分量生物醫(yī)學(xué)運(yùn)用探析

前言:本站為你精心整理了獨(dú)立分量生物醫(yī)學(xué)運(yùn)用探析范文,希望能為你的創(chuàng)作提供參考價(jià)值,我們的客服老師可以幫助你提供個(gè)性化的參考范文,歡迎咨詢。

獨(dú)立分量生物醫(yī)學(xué)運(yùn)用探析

1獨(dú)立分量分析

獨(dú)立分量分析(ICA)是統(tǒng)計(jì)信號(hào)處理近年來的一項(xiàng)發(fā)展。顧名思義,這是一種分解技術(shù),其特點(diǎn)是把信號(hào)分解成若干相互獨(dú)立的成分。主分量分析(PCA)和奇異值分解(SVD)是人們較熟悉的分解信號(hào)的線性代數(shù)方法,ICA與它們的主要不同之處表現(xiàn)在:

(1)后者只要求分解出來的各分量互相正交(不相關(guān)),但并不要求它們互相獨(dú)立。用統(tǒng)計(jì)信號(hào)處理的語言來表達(dá),即:后者只考慮二階統(tǒng)計(jì)特性,而前者則要更全面考慮其概率密度函數(shù)的統(tǒng)計(jì)獨(dú)立性。

(2)后者按能量大小排序來考慮被分解分量的重要性。這樣的分解雖然在數(shù)據(jù)壓縮和去除弱噪聲方面有其優(yōu)點(diǎn),但分解結(jié)果往往缺乏明確的生理意義。前者雖然分解出的分量其能量大小存在不確定性,但當(dāng)測量值確實(shí)是由若干獨(dú)立信源混合而成時(shí),分解結(jié)果往往具有更好的生理解釋。由于測得的生理信號(hào)往往是若干獨(dú)立成分的加權(quán)迭加(例如,誘發(fā)腦電總是被自發(fā)腦電所淹沒,而且常伴隨有心電、眼動(dòng)、頭皮肌電等干擾),此ICA是一項(xiàng)值得注意的分解方法。

此外,神經(jīng)生理研究認(rèn)為,人類對認(rèn)知、感知信息的前期處理有“去冗余”的特點(diǎn)。ICA在這方面也表現(xiàn)出類似特性,因?yàn)榛ハ嗒?dú)立的分量之間互信息是最少的。ICA是伴隨著盲信號(hào)處理,特別是盲信源分離發(fā)展起來。其研究熱潮方興未艾,也正在引起生物醫(yī)學(xué)工程界的注意,IEEETransBME正在組織出版以它為重點(diǎn)的專輯。就國際范圍看,以下幾個(gè)研究單位目前工作比較領(lǐng)先:(1)美國加州大學(xué)生物系計(jì)算神經(jīng)生物學(xué)實(shí)驗(yàn)室,(2)日本Riken腦科學(xué)研究所腦信息研究室,(3)芬蘭赫爾辛基工業(yè)大學(xué)計(jì)算機(jī)及信息科學(xué)實(shí)驗(yàn)室,目前發(fā)表有關(guān)文獻(xiàn)較多的刊物有IEEETrans的SP和NN以及NeuralComputation等。本文目的是對ICA的原理、算法及應(yīng)用作一簡述,以引起國內(nèi)同行對它的關(guān)注。將側(cè)重于概念說明,而不追求數(shù)學(xué)上的嚴(yán)謹(jǐn)性。

2原理

2.1問題的提法,s-(n)是一組互相獨(dú)立的信源,A是混合矩陣,x-(n)是觀察記錄,即x-(n)=As-(n)。問題的任務(wù)是:在A陣未知且對s-(n)除獨(dú)立性外無其它先驗(yàn)知識(shí)的情況下,求解混矩陣B,使得處理結(jié)果y-(n)=Bx-(n)中各分量盡可能互相獨(dú)立,且逼近s(n)。容易理解,解答不是唯一的,它至少受以下條件的限制:(1)比例不定性:s-(n)中某一分量大K倍時(shí),只要使相應(yīng)的A陣系數(shù)減小K倍,x-(n)便保持不變。

因此,求解時(shí)往往把s-(n)假設(shè)成具有單位協(xié)方差陣,即s-中各分量均值為零,方差為1,且互相獨(dú)立。(2)排序不定性:y-與s-中各分量排序可以不同。因?yàn)橹灰獙φ{(diào)B陣中任意兩行,y-中相應(yīng)元素的位置也便對調(diào)。(3)s-(n)中至多只能有一個(gè)高斯型信源:這是因?yàn)楦咚剐旁吹木€性組合仍是高斯型的,因此混合后便無法再區(qū)別。(4)信源數(shù)目N只能小于或等于觀測通道數(shù)M。N>M情況目前尚未解決。以下討論設(shè)M=N。因此,y-(n)只是在上述條件下對s-(n)的逼近。換名話說,任務(wù)的實(shí)質(zhì)是優(yōu)化問題,它包括兩個(gè)主要方面:優(yōu)化判據(jù)(目標(biāo)函數(shù))和尋優(yōu)算法。

2.2目標(biāo)函數(shù)

這一領(lǐng)域的研究者已經(jīng)從不同角度提出了多種判據(jù)。其中以互信息極小判據(jù)(MinimizationofMutualInformation,簡記MMI)和信息或熵極大判據(jù)(Informax或MaximizationofEntropy,簡記ME)應(yīng)用最廣。由于最基本的獨(dú)立性判據(jù)應(yīng)由概率密度函數(shù)(probabilitydensityfunction,簡記pdf)引出,而工作時(shí)pdf一般是未知的,估計(jì)它又比較困難,因此通常采用一些途徑繞過這一困難。

常用的方法有兩類:①把pdf作級(jí)數(shù)展開,從而把對pdf的估計(jì)轉(zhuǎn)化為對高階統(tǒng)計(jì)量的估計(jì);②在圖1的輸出端引入非線性環(huán)節(jié)來建立優(yōu)化判據(jù)。后一作法實(shí)際上隱含地引入了高階統(tǒng)計(jì)量。(1)互信息極小判據(jù):統(tǒng)計(jì)獨(dú)立性的最基本判據(jù)如下:令p(y-)是y-的聯(lián)合概率密度函數(shù),pi(yi)是y-中各分量的邊際概率密度函數(shù)。當(dāng)且僅當(dāng)y-中各分量獨(dú)立時(shí)有:p(y-)=∏Ni=1pi(yi)因此用p(y-)與∏i=1pi(yi)間的Kullback-Leibler散度作為獨(dú)立程度的定量度量:I(y-)=KL[p(y-),∏Ni=1pi(yi)]=∫p(y-)log[p(y-)∏Ni=1pi(yi)]dy-(1)顯然,I(y-)0,當(dāng)且僅當(dāng)各分量獨(dú)立時(shí)I(y-)=0。因此,互信息極小判據(jù)的直接形式是:在y-=Bx-條件下尋找B,使(1)式的I(y-)極小為了使判據(jù)實(shí)際可用,需要把I(y-)中有關(guān)的pdf展成級(jí)數(shù)。

由于在協(xié)方差相等的概率分布中高斯分布的熵值最大,因此展開時(shí)常用同協(xié)方差的高斯分布作為參考標(biāo)準(zhǔn)。例如,采用Gram-Charlier展開時(shí)有:P(yi)PG(yi)=1+13!k2yih3(y-i)+14!k4yih4(yi)+…式中PG(yi)是與P(yi)具有同樣方差(σ2=1)和均值(μ=0)的高斯分布。k3yi、k4yi是yi的三、四階累計(jì)量(cumulant),hn(yi)是n階Hermit多項(xiàng)式。此外還有許多其他展開辦法,如Edgeworth展開,利用負(fù)熵(Negentropy)等。不論采用何種展開方式,經(jīng)推導(dǎo)后總可把式(1)近似改成k3、k4的函數(shù):I(y)=F(k3y-,k4y-,B)(1)’F(·)的具體形式多種多樣,視推導(dǎo)時(shí)的假設(shè)而異。

這樣就得到互信息判據(jù)的實(shí)用近似形式:在y-=Bx-條件下尋找B,使式(1)的I(y-)極小(2)Infomax判據(jù):這一判據(jù)的特點(diǎn)是在輸出端逐分量地引入一個(gè)合適的非線性環(huán)節(jié)把yi轉(zhuǎn)成ri(如圖2)??梢宰C明,如果gi(·)取為對應(yīng)信源的累積分布函數(shù)cdf(它也就是概率密度函數(shù)的積分),則使r-=(r1…rN)T的熵極大等效于使I(y-)極小,因此也可達(dá)使y-中各分量獨(dú)立的要求。從而得到Infomax判據(jù):在選定適當(dāng)gi(·)后,尋找B使熵H(r-)極大需要指出的是,雖然理論上gi(·)應(yīng)取為各信源的cdf,但實(shí)踐證明此要求并不很嚴(yán)格,有些取值在0~1之間的單調(diào)升函數(shù)也可以被采用,如sigmoid函數(shù)、tanh(·)等。估計(jì)H(r-)固然也涉及pdf,但由于其作用已通過gi(·)引入,所以可以不必再作級(jí)數(shù)展開而直接用自適應(yīng)選代尋優(yōu)步驟求解。文獻(xiàn)中還提出了一些其他判據(jù),如極大似然、非線性PCA等,但它們本質(zhì)上都可統(tǒng)一在信息論的框架下,所以不再一一列舉[1]。

3處理算法優(yōu)化算法

可大致分為兩類,即批處理與自適應(yīng)處理。

3.1批處理批處理比較成熟的方法有兩類。較早提出的是成對旋轉(zhuǎn)法[2],其特點(diǎn)是把優(yōu)化過程分解成兩步。先把x-(n)經(jīng)W陣加以“球化”得z-(n),使z-(n)T=IN,即:各分量不相關(guān)且方差為1,然后再尋找合適的正交歸一陣U達(dá)到使y-各分量獨(dú)立的目的。前一步類似于PCA,后一步則可利用Givens旋轉(zhuǎn),根據(jù)目標(biāo)函數(shù),將z-中各分量兩兩成對反復(fù)旋轉(zhuǎn)直到收斂。這種方法計(jì)算量較大。1999年,Gadoso提出幾種方法對它作了進(jìn)一步改進(jìn)[3],其中包括:Maxkurt法、JADE法、SHIBBS法等,限于篇幅,本文不再敘述。近年來,提出的另一類方法是所謂“固定點(diǎn)”法(FixedPointMethod)[4,5],其思路雖來源于自適應(yīng)處理,但最終算法屬于批處理。

簡單地說,通過隨機(jī)梯度法調(diào)節(jié)B陣來達(dá)到優(yōu)化目標(biāo)時(shí),有:B(k+1)=B(k)+ΔB(k)ΔB(k)=-μεkB(k)式中k是選代序號(hào),εk是瞬時(shí)目標(biāo)函數(shù)。當(dāng)?shù)竭_(dá)穩(wěn)態(tài)時(shí)必有[E是總集均值算子]:E[ΔB(k)]=0(2)如果ΔB(k)與B(k)有關(guān),就可由(2)式解出B的穩(wěn)態(tài)值。不過由于(2)式總是非線性方程,因此求解時(shí)仍需要采用數(shù)值方法(如牛頓法、共軛梯度法等)迭代求解。實(shí)踐證明,不論是收斂速度還是計(jì)算量,此法均優(yōu)于前一種方法,而且它還可以根據(jù)需要逐次提取最關(guān)心的yi,因此是一類值得注意的方法。

3.2結(jié)合神經(jīng)網(wǎng)絡(luò)的自適應(yīng)處理結(jié)合神經(jīng)網(wǎng)絡(luò)的自適應(yīng)處理算法的框圖。1994年Cichocki提出的調(diào)節(jié)算法是:B(k+1)=B(k)+ΔB(k)ΔB(k)=μk[I-Ψ(y-k)ΦT(y-k)]B(k)式中Ψ、Φ都是N維矢量,其各元素都是單調(diào)升的非線性函數(shù):Ψ(yk)=sgnyk·y2k,ΦTy-k=3tanh(10yk)所得結(jié)果雖令人鼓舞,但是方法是經(jīng)驗(yàn)性的。其后學(xué)者們從理論上沿著這一方向作了更深入的討論,并發(fā)展出多種算法。概括地說,主要發(fā)展有以下幾點(diǎn):

(1)引入自然梯度(或相對梯度)。按照最陡下降的隨機(jī)梯度法推導(dǎo)出的系數(shù)調(diào)節(jié)公式往往具有如下一般形式:ΔB(k)=μk[B-T(k)-Ψ(y-k)x-Tk]式中的Ψ(y-k)視具體算法而異。Infomax法中Ψ(·)由所選用的g(·)決定;MMI法中則與yk的三、四階矩有關(guān)。B-T(k)是矩陣求逆再轉(zhuǎn)置,它的計(jì)算量很大。Amari[7]在1998年提出將最陡下降梯度改為“自然梯度”,兩者間關(guān)系是:[自然梯度]=[最陡下降梯度]·BT(k)B(k)于是有:ΔB(k)=μk[B-T(k)-Ψ(y-k)x-Tk]BT(k)B(k)=μk[I-Ψ(y-k)y-Tk]B(k)由于此式避免了矩陣求逆,因此計(jì)算量明顯降低且收斂加快。目前,這一作法已被普遍接受。

(2)引入自然梯度后,采用不同的優(yōu)化判據(jù)得出的調(diào)節(jié)公式雖各有千秋,但大致都可表示為如下的“串行更新”形式:B(k+1)=B(k)+ΔB(k)=[I+H(y-k)]B(k)只是H(y-k)的具體形式各不相同。串行矩陣更新的算法還具有一些理論上值得注意的性質(zhì),如均勻特性(uniformproperty)和等變性(equivariant)等[8,9]。

(3)四階累計(jì)量k4>0的超高斯信號(hào)和k4<0的欠高斯信號(hào),其處理過程應(yīng)當(dāng)予以區(qū)別。采用同一算法效果往往不好。目前的辦法多是在調(diào)節(jié)公式中引入一個(gè)開關(guān)。根據(jù)估計(jì)得k4的符號(hào)來切換不同算法,如擴(kuò)展的Infomax法就是一例[10]。此法的系數(shù)調(diào)節(jié)公式是:ΔB(k)=μk[I-Ktanh(y-k)·y-Tk-y-ky-Tk]B(k)其中K是對角陣,其對角元素之值為+1或-1,視該信號(hào)分量k4>0或<0而定。為了實(shí)時(shí)應(yīng)用,估計(jì)K4也可采用遞歸算法??傊?自適應(yīng)算法是目前采用較廣的方法。

4應(yīng)用舉例

4.1仿真計(jì)算為檢驗(yàn)經(jīng)ICA算法分解信源的能力,左圖是一組源信號(hào),它們對系統(tǒng)來說是未知的。這一組信號(hào)經(jīng)混合后的觀察信號(hào)作為(中圖所示)ICA算法的輸入,分解后的結(jié)果如右圖所示。可以看到,除了波形的次序、極性和波幅發(fā)生變化之外,源信號(hào)的波形被很好地分解出來。一般情況下,臨床腦電信號(hào)中既有超高斯成分(如誘發(fā)電位),也有亞高斯成分(如肌電和工頻干擾)。為了檢驗(yàn)擴(kuò)展Infomax算法處理這類情況的能力,我們又用此法進(jìn)行了如圖6所示仿真實(shí)驗(yàn)。左圖第一行是一段自發(fā)腦電信號(hào),第二行是仿真的視覺誘發(fā)電位,第三行是肌電干擾?;旌虾蟮男盘?hào)(圖中第二列所示)經(jīng)ICA分解得到如右圖所示的結(jié)果。這一結(jié)果表明擴(kuò)展ICA算法在同時(shí)存在超高斯和亞高斯信號(hào)的情況下,仍然能夠很好地實(shí)現(xiàn)盲分解。但應(yīng)指出:這一仿真結(jié)果并不說明通過ICA分解就能直接得到視覺誘發(fā)電位,因?yàn)檫€沒有涉及頭皮上的多導(dǎo)數(shù)據(jù)。

4.2實(shí)驗(yàn)VEP分析(1)多導(dǎo)腦電觀察中VEP的增強(qiáng):需要強(qiáng)調(diào),把多導(dǎo)腦電作ICA分解后直接取出其中與VEP有關(guān)的成分,得到的并不是頭皮電極處的VEP分量,因?yàn)樗鼈冎皇欠纸獬鰜淼男旁?而這些信源的位置并不在頭皮上,為了得到電極處測量值中的VEP成分,需按下述步驟處理:用訓(xùn)練得的W陣直接對頭皮上取得的多導(dǎo)腦電數(shù)據(jù)進(jìn)行ICA分解,得到各獨(dú)立分量組成的矩恥y=Bx(見圖7a);再根據(jù)各分量的波形特征及產(chǎn)生時(shí)段,選擇與VEP有關(guān)的一部分分量(例如在前300ms中具有較大幅度的分量),并將其余分量置0,得到新的獨(dú)立分量矩陣y’;再反變換回頭皮各電極處得x’=B-1-y’。這樣才能得到去除噪聲和干擾后各電極處的VEP。

采用這樣的方法可顯著地減少提取VEP所需要的累加次數(shù)。左圖是經(jīng)3次累加所得VEP,中圖是經(jīng)50次累加所得結(jié)果,右圖則是用左圖經(jīng)圖7中ICA處理后提取的VEP。比較中、右兩圖,兩者波形趨勢基本相同,但后者比前者其主要峰、谷顯然更清楚,而累加次數(shù)由50減到3。(2)ICA分量的空間模式:把某一個(gè)ICA分量的瞬時(shí)值經(jīng)B-1逆推回頭皮各電極處得x-’后,就可以按斷層圖的插補(bǔ)方法得到該時(shí)該分量在頭皮上的空間分布模式。這個(gè)空間分布模式也可以用更簡單辦法得到:只要把逆矩陣B-1中相應(yīng)于某ICA分量的列中各元素的值賦與頭皮各電極處,再作斷層圖插值,就可以表現(xiàn)該ICA分量在任意時(shí)刻的空間分布模式。也就是:x’i(t)=b’ijy’j(t),i=1~N式中b’ij是B-1的第i行第j列元素。

可見ICA分量y’j(t)在頭皮各電極處的對應(yīng)值等于用逆陣B-1第j列各元素來對y’j(t)加權(quán)。因此,列矢量b’j=[b’1,…,b’Nj]可以用來統(tǒng)一地表現(xiàn)任意時(shí)刻y’j的空間模式。

5總結(jié)與展望

本文粗略介紹了ICA的原理、算法和應(yīng)用,可以看到ICA確是一個(gè)值得注意的研究方向,但其理論體系尚未完整,實(shí)際采用的處理方法多少還帶有經(jīng)驗(yàn)性。例如為什么對非線性特性gi的要求不甚嚴(yán)格就沒有明確解釋;又如算法的穩(wěn)定性、收斂性在實(shí)踐中是經(jīng)常遇到的問題。從應(yīng)用方面看也還有許多待開發(fā)的領(lǐng)域,例如如何應(yīng)用于生理信號(hào)的模式識(shí)別與系統(tǒng)建模等。從生物醫(yī)學(xué)信號(hào)分析的角度看,還有一些亟待深入的問題。例如:

(1)在以上分析中混合陣A被假設(shè)為恒定。這對靜態(tài)的圖像分析或固定信源是合理的;但在生理實(shí)際中,等效信源一般在空間并不固定,因而混合陣A應(yīng)視為時(shí)變的,而且傳導(dǎo)過程中還會(huì)引入容積導(dǎo)體的卷積及遲作用。這可能是實(shí)際生理信號(hào)分解結(jié)果不夠理想的原因之一。

(2)一般公認(rèn),生理信號(hào)的非平穩(wěn)性較強(qiáng),而以上分析并沒有考慮信號(hào)的非平穩(wěn)性。

(3)生理研究表明腦內(nèi)電活動(dòng)往往是分區(qū)聚集的,活動(dòng)區(qū)的部位隨感覺、認(rèn)知具體任務(wù)而定;而各區(qū)間的電活動(dòng)經(jīng)皮層下的神經(jīng)網(wǎng)絡(luò)存在著同步聯(lián)系。因此各活動(dòng)區(qū)的等效源的電活動(dòng)不是完全獨(dú)立的。采用ICA技術(shù)如何反映這種情況也值得研究。

(4)采用二階以上的累計(jì)量為判據(jù)時(shí),對高斯噪聲是透明的;但對非高斯噪聲情況如何,尚待研究。應(yīng)當(dāng)強(qiáng)調(diào)任何方法都不是萬能的。合理的途徑是把它結(jié)合到一個(gè)多方法、分層次的信號(hào)處理框架中發(fā)揮自己的優(yōu)勢。

清河县| 济南市| 太仓市| 明星| 绥江县| 丰都县| 仁寿县| 汶上县| 东光县| 蓬安县| 涟水县| 辽中县| 彭阳县| 慈利县| 屏东县| 霍邱县| 手游| 新宾| 奎屯市| 太康县| 商河县| 清水河县| 安国市| 北海市| 彭泽县| 平遥县| 青海省| 永福县| 和平区| 苍梧县| 腾冲县| 永年县| 防城港市| 连城县| 昌吉市| 宝丰县| 肥城市| 广安市| 天镇县| 泾阳县| 灵石县|